Rapport annuel 2018

Installation de Stockage des Déchets Non Dangereux

VIGGIANELLO

Référence: Arrêté n°2A-2017-055-09-001 du 09/05/2017

Table des matières

1.	Prés	enta	tion du site de Viggianello	5
:	1.1.	Prés	sentation générale	5
:	1.2.	Acti	vité	5
2.	Bilar	n d'e	xploitation de 2018	6
2	2.1.	Moy	yens de contrôle	6
2	2.2.	Qua	ntité de déchets traités en 2018	6
3.	Gest	tion (des eaux du site	8
3	3.1.	Moy	yens de contrôle et d'analyse	8
3	3.2.	Bila	n hydrique	9
3	3.3.	Ana	lyses des eaux	11
	3.3.	1.	Eaux pluviales	11
	3.3.	1.1.	Résultats d'analyse 2018	12
	3.3.	1.2.	Comparatif moyenne des analyses 2012 -2018	12
	3.3.	1.3.	Interprétation des résultats	13
	3.3.2	2.	Canalisation sous casier	13
	3.3.2	2.1.	Résultats d'analyse 2018	13
	3.3.2	2.2.	Comparatif moyenne des analyses 2014 -2018	14
	3.3.2	2.3.	Interprétation des résultats	14
	3.3.3	3.	Eaux souterraines	15
	3.3.3	3.1.	Résultats d'analyse 2018	15
	3.3.3	3.2.	Tableau comparatif – moyenne des analyses 2011-2018	19
	3.3.3	3.3.	Courbes d'évolution de la conductivité	23
	3.3.3	3.4.	Interprétation des résultats	23
	3.3.4	4.	Eaux superficielles – Ruisseau du Vetricelli (amont et aval du rejet du perméat)	24
	3.3.4	4.1.	Résultats d'analyse 2018	24
	3.3.4	4.2.	Interprétation des résultats	24
	3.3.	5.	Eaux superficielles – Rizzanese	25
	3.3.	5.1.	Résultats d'analyse 2018	25
	3.3.	5.2.	Interprétation des résultats	25
	3.3.	5.3.	Résultats IBGN	26
	3.3.0	6 .	Lixiviats	27

	3.3.	6.1.	Bassin lixiviat	27
	3.3.	6.1.1.	Résultats d'analyse 2018	27
	3.3.	6.1.2.	Charge hydrique en fond de casier	28
	3.3.	6.1.3.	Volume de lixiviat dans le bassin	29
	3.3.	6.2.	Traitement des lixiviats	29
	3.3.	6.2.1.	Traitement par osmose inverse	29
	3.3.	6.2.2.	Suivi du perméat	30
	3.3.	6.2.3.	Performances attendues du traitement d'osmose	31
	3.3.	6.2.4.	Traitement des lixiviats par aération	31
4.	Ges	tion d	u biogaz	32
	4.1.	bilan	de fonctionnement	32
	4.2.	Résu	ltats d'analyse	33
5.	Ges	tion d	es espaces verts	34
6.	Suiv	i régle	mentaire	35
	6.1.	Inspe	ections de la DREAL	35
	6.2.	CSS		35
	6.3.	Exter	nsion de la capacité du site	35
	6.4.	Cont	rôles périodiques	35
7.	Séci	urité E	nvironnement	36
	7.1.	Incid	ents	36
	7.2.	Form	ations / informations	36
	7.3.	Suivi	du Système de Management Environnemental	37
	7.3.	1.	Son engagement environnemental	37
	7.3.	2.	Principe de la certification ISO 14001	37
	7.3.	3.	Maîtrise des écarts	38
	7.3.	4.	Performances environnementales	38
	7.4.	Gesti	on des nuisances olfactives	38
	7.5.	Fréqu	uentation du site par les oiseaux	39
8.	Bila	n des t	travaux de l'année 2018 et perspectives pour l'année 2019	40
	8.1.	Bilan	2018	40
	8.2.	Proje	rts 2019	43
9.	Ann	exes		47
Αı	nnexe 1	l.	plan de situationplan de situation	47
A۱	nnexe 2	2.	Rapports d'analyse – Eaux pluviales	48
A	nnexe 3	3.	Rapport d'analyse - Canalisation sous casier	49

Annexe 4.	Rapports d'analyses - Eaux souterraines	50
Annexe 5.	Rapports d'analyses - Ruisseau du Vetricelli	51
Annexe 6.	Rapports d'analyses - Ruisseau du Rizzanese	52
Annexe 7.	Rapports IBGN – Rizzanese	53
Annexe 8.	Rapport d'analyses – Lixiviats	54
Annexe 9.	Rapports d'analyses – Perméats	55
Annexe 10.	Rapports réglementaires d'analyse des fumées de torchère .	56
Annexe 11.	Certificat ISO 14001	Erreur ! Signet non défini.
Annexe 12.	Plans topographique – février 2018	57

1. Présentation du site de Viggianello

1.1. Presentation generale

L'Installation de Stockage des Déchets Non Dangereux (ISDND) est située sur la commune de Viggianello. Elle est organisée de la façon suivante :

- la capacité totale du site pour la réception de nouveaux déchets est de 464 000 m3, soit 464 000 T (440 000 t de capacité initiale et 24 000 t d'augmentation non substantielle)
- la capacité maximale annuelle de l'installation en masse et en volume de déchets pouvant être admis est de 45 000 t/an soit 45 000 m3 /an
- La superficie de l'installation est de 6 ha, sur laquelle la zone à exploiter représente après couverture 2,8 ha pour le nouveau casier et 0,6 ha pour le casier déchets déplacés
- la cote maximale du site, couverture comprise et après tassement est fixée à 115 m NGF.
- Le site dispose en outre :
 - d'une zone de réception des véhicules avec pont-bascule, portique de contrôle de la radioactivité,
 - d'un bassin de stockage des lixiviats,
 - d'un bassin de collecte des eaux pluviales,
 - un bureau d'accueil,
 - un bureau de gestion,
 - un réseau de captage des biogaz,
 - une unité de brûlage des biogaz,
 - un stock de remblai pour divers aménagements.

1.2. ACTIVITE

Suivant l'arrêté d'exploitation n°2A-2017-055-09-001 du 09/05/2017, les déchets autorisés à être déposés dans le centre de stockage sont exclusivement les déchets municipaux après tri des ménages et les déchets non dangereux non valorisables, de toutes origines :

- déchets secs non recyclables issus des centres de tri et de déchetteries,
- refus de compostage,
- refus de tri des encombrants,
- déchets industriels et commerciaux banals non valorisables, non fermentescibles et peu évolutifs.

Le SYVADEC est autorisé depuis le 06/02/2009 par arrêté préfectoral n°08-0243 du 21 mars 2018 à exploiter ce site pour une durée 12 ans à compter du 21 mars 2008. Un marché public d'exploitation a été passée avec la SARL LANFRANCHI TP en mars 2017.

2. Bilan d'exploitation de 2018.

2.1. MOYENS DE CONTROLE

Les véhicules de transport de déchets entrant sur le site passent systématiquement sous un portique de détection de radioactivité. Ils sont ensuite identifiés grâce à un système de badges d'accès et pesés à l'aide d'un pont bascule.

Depuis le dernier trimestre 2013, en vue de renforcer le suivi des données de tonnage, les données sont à présent centralisés, agrégés et transposés dans des rapports d'aide à la décision qui viennent faciliter les contrôles en interne par le service exploitation du SYVADEC.

2.2. QUANTITE DE DECHETS TRAITES EN 2018

En raison du manque de capacité de stockage sur la Corse en 2018, la capacité annuelle admissible de stockage de l'installation a été augmentée temporairement par arrêté inter-préfectoral N°2A-2018-06-25-005 du 25/06/18 pour être fixée à 71 500 tonnes puis par un arrêté préfectoral de réquisition n°2A-2018-08-13-002 du 13/08/2018 autorisant le dépôt de 60 000 t de déchets au-delà de la capacité du casier de 464 000 t jusqu'au 1^{er} mars 2019 La quantité de déchets réceptionnée en 2018 est de 125 693,28 tonnes, en hausse de 23 % par rapport à 2017.

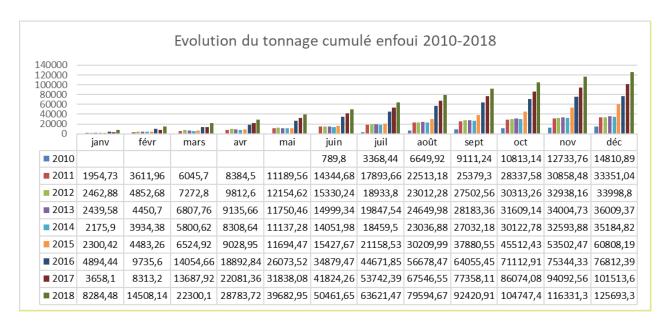

	tonnag	e 2018	tonn	age 2017	
	par mois	cumulé	par mois	cumulé	
Janvier	8284,48	8284,48	3658,10	3658,10	
Février	6223,66	14508,14	4655,10	8313,20	
Mars	7791,96	22300,10	5374,72	13687,92	
Avril	Avril 6483,62 28783,72		8393,44	22081,36	
Mai	10899,23	39682,95	9756,72	31838,08	
Juin	10778,70	50461,65	9986,18	41824,26	
Juillet	13159,82	63621,47	11918,13	53742,39	
Août	15973,20	79594,67	13804,16	67546,55	
Septembre	12826,24	92420,91	9811,56	77358,11	
Octobre	12326,47	104747,38	8715,97	86074,08	
Novembre	11583,90	116331,28	8018,48	94092,56	Comparatif 2018/2017
Décembre	9362,00	125693,28	7421,06	101513,62	23,82%

Tableau 1: Tonnage de déchets enfouis 2018 / 2017

Le tonnage est la somme des Ordures Ménagères, des Déchets Assimilés et des déchets provenant des bennes du Tout Venant (en provenance des recycleries).

Au 31 décembre 2018, 518 182 tonnes de déchets ont été enfouis dans le casier (taux de compactage de 1,04 t/m3 calculé en février 2018). La capacité restante est donc de 5 818 tonnes (524 000 tonnes de capacité dont 60 000 t au titre de la réquisition).

Graphique 1 : Evolution du tonnage de déchets enfouis sur la période 2010-2018

3. Gestion des eaux du site

3.1. MOYENS DE CONTROLE ET D'ANALYSE

Il existe deux sources aqueuses sur le site :

- **les eaux pluviales :** les eaux internes sont stockées dans le bassin de rétention des eaux de pluie après passage dans un débourbeur / déshuileur. Ce bassin sert également de réserve incendie. Elles font l'objet à minima d'un contrôle annuel sur la totalité des paramètres de l'arrêté préfectoral.
- **les lixiviats**, drainés vers un bassin de stockage, peuvent être recirculés pour alimenter le processus de fermentation de déchets. Ils font l'objet d'un contrôle de volume en cas de réinjection et d'une analyse annuelle qualitative. Un enregistrement du niveau d'eau dans la lagune est réalisé quotidiennement.

Pour mesurer l'impact de l'ISDND sur l'environnement, des piézomètres sont installés en amont et en aval du casier à déchets permettant de contrôler la qualité des eaux souterraines (cf. annexe 1).

Enfin, pour contrôler qu'aucun rejet polluant le milieu environnant n'ait lieu, il a été mis en place une procédure de contrôle semestriel des eaux du ruisseau environnant, le Vetricelli et du confluent de ce ruisseau, le Rizzanese. Des prélèvements sont effectués en Amont et en Aval du site et de la confluence deux fois par an.

Lorsque le traitement des lixiviats est réalisé, le contrôle des rejets est réalisé à minima tous les 3 mois.

Le plan de contrôle a été élaboré à partir des fréquences réglementaires de l'arrêté préfectoral n°2A-2017-055-09-001 du 09/05/2017.

L'ensemble des résultats d'analyse est consultable en annexe.

3.2. BILAN HYDRIQUE

D'après les données récoltées par la station météorologique du site, il est tombé environ 939 mm d'eau par m² sur l'ISDND de Viggianello sur l'année 2018 soit une hausse de la pluviométrie de 47% par rapport l'année 2017. Cette pluviométrie est 24 % supérieure à la valeur moyenne mesurée sur site depuis 2011 et la plus forte pluviométrie enregistrée sur une année.

	Pluviomé	trie 2018	Pluviomé	trie 2017	
	par mois	Cumulée	par mois	Cumulée	
janvier	57,0	57	139,0	139	
février	130,0	187	62,0	201	
mars	112,0	299	38,0	239	
avril	38,0	337	17,0	256	
mai	140,0	477	6,0	262	
juin	96,0	573	3,0	265	
juillet	15,0	588	0,0	265	
août	77,0	665	0,0	265	
septembre	28,0	693	84,0	349	
octobre	86,0	779	4,0	353	
novembre	134,0	913	88,0	441	comparatif 2018/2017
décembre	26,0	939	173,0	614	47%

Tableau 2: Pluviométrie sur site comparaison 2018/2017

• Bilan théorique brut :

La surface du site, du casier et des bassins permet d'estimer un bilan hydrique global des volumes d'eau stockés ou transitant sur site en 2018 en multipliant les surfaces par la pluviométrie mesurée sur site

	zone	Surface (m²) - S	Volume (m3) S x précipitation
	Bassin EP	3 000	2 817
	Bassin versant naturel (terre)	18 180	17 071
	voirie	10 680	10 029
Pluvial	Casier - zones non exploitées et recouvertes> vers réseau EP (90 % surface casier - zone ouverte 3000 m²)	20 574	19 319
	Total eaux pluviales	52 434	49 236
	Bassin lixiviats	2 280	2 141
	Casier	5 286	4 964
Lixiviats	dont : zone aval ouverte en exploitation	2 000	1 878
LIXIVIALS	autres zones (10 % surface casier - zone ouverte)	3 286	3 086
	Total lixiviats	7 566	7 104
		Volume réel	4 996
	surface totale m ²	60 000	56 340

Tableau 3: Bilan brut 2018/2017

Bilan sur les eaux pluviales

Afin de maintenir le bassin a son volume de sécurité et sachant que le fil d'eau de la canalisation de rejet est situé audessus de ce niveau, les rejets du bassin sont effectués par pompage. Il a donc été mesuré à partir des heures de fonctionnement de la pompe, un rejet annuel de 12 807 m3.

En comparant avec le volume théorique brut de 49 236 m3 d'eau pluviales récoltées, le coefficient global de ruissellement est de l'ordre de 26 % ce qui est cohérent avec la topographie du site et la nature du sol.

• Bilan sur le lixiviat produit :

Le volume réel de lixiviat produit en 2018 est établi à partir :

- Du volume de rejet est établi à partir des données de rejet après traitement par osmose inverse. Ce volume est de **3645 m3**
- De la différence de volume stocké dans le bassin de lixiviat sur l'année 2018. Ce volume est estimé à 751 **m3** stocké sur l'année.
- De la différence de volume stocké dans le fond de casier. Ce volume est estimé à **600 m3** stocké sur l'année.

Nous pouvons donc établir un volume réel de lixiviat de **4996 m3** sur l'année 2018.

		01/01/2018	31/12/2018	delta
bassin lixiviats	Hauteur en m	3,3	4,1	0,8
	Volume calculé en			
	m3 ¹	3,3 4,1 en 1852 2603 0 400 en 50 0 600 A -delta 2018 en m3	751	
Charge hydrique fond de casier	Hauteur en cm	0	400	400
	Volume calculé en			
	m3 (100 cm = 150			
	m3 - ²)	0	600	600
			A -delta 2018 en m3	1351
	B -perméat rejeté			3645
			volume réel 2014 (A + B	4996

Tableau 4 : Volume réel de lixiviat

Soit une différence de l'ordre de 30 % par rapport au calcul théorique ce qui est supérieure à l'incertitude admise dans ce type de calcul (+/- 25%). La différence peut être expliquée par la valeur d'évaporation sur le bassin de lixiviat qui ne peut être estimée sur le site.

¹ calculé à partir de la courbe d'équivalence du bassin lixiviat

² calculé suivant le retour d'expérience

3.3. ANALYSES DES EAUX

Les analyses ont été réalisées par le laboratoire LD2A et par le laboratoire Eurofins accrédités par le COFRAC et agréés par le Ministère de l'Environnement.

3.3.1. Eaux pluviales

Les analyses ont été effectuées de la façon suivante :

Périodicité	Paramètres	Nombres de mes	sures par an	Remarques
		Demandées	Réalisées	
Mensuelles	pH, Conductivité, Température	Si rejet	2	
Semestrielles	DCO, DBO5, MES, fer, azote, COT, phosphore, phénols, métaux, hydrocarbures, fluor, CN, AOX	2	2	

Tableau 5 : Plan de contrôle 2017 sur le bassin des eaux pluviales

Les eaux pluviales collectées sont conduites vers un bassin de stockage pour contrôle avant rejet dans le milieu naturel.

Conformément à l'article 3.3.6. de l'arrêté préfectoral n°08-0243 du 21 mars 2008, le bassin des eaux pluviales est doté d'un débourbeur-déshuileur assurant un prétraitement des effluents entrants pour les eaux susceptibles d'être polluées par les hydrocarbures des engins.

Une vanne guillotine permet de fermer le bassin et d'éviter toute sortie d'eau du site dans le milieu naturel en cas de dépassement d'un seuil de rejet.

3.3.1.1. Résultats d'analyse 2018

Bassin EP	Unités	Valeurs limites	oct-10	mai-17	août-17	nov-17 inopiné	févr-18	juil-18
pH	/	/	9,2	9,4	9	9,5	8,6	8,8
Conductivité (calculée)	μS/cm	/		996	1400	1004	664	1270
СОТ	mg/l	<70mg/l	19	27	38,3	41	17,3	42
MEST	mg/l	< 100 mg/l si flux journalier max < 15 kg/j < 35 mg/l au-delà	/	47,7	130	110	79	29
DBO5	mg/l	< 100 mg/l si flux journalier max < 30 kg/j < 30 mg/l au-delà	4	8	19	5,1	9	16
DCO	mg/l	< 300 mg/l si flux journalier max < 100 kg/j < 125 mg/l au-delà	59	112	240	<30	95	200
Azote mg/l m		Azote global Concentration moyenne mensuelle < 30 mg/l si flux journalier max > 50 kg/j	<1	11,2	10,31	<18	6	<12,54
Phosphore	mg/l	<10MG/L	0,2	0,15	0,18	0,5	0,21	0,1
Phénols	mg/l	<0,1MG/L	/	<0,01	<0,01	<0,01	<0,01	<0,01
Métaux	mg/l	<15MG/L	/	0,15	0,36	<2,1	0,36	<1,03
Cr 6+	mg/l	<0,1MG/L	/	<0,05	<0,01	<0,01	0,02	<0,01
Cd	mg/l	<0,2MG/L	/	<0,001	0,00005	<0,002	<0,002	nr
Pb	mg/l	<0,5MG/L	/	<0,025	<0,0005	<0,01	<0,01	<0,01
Hg	mg/l	<0,05MG/L	/	<0,0003	<0,00001	<0,0005	<0,0005	<0,0005
Arsenic	mg/l	<0,1MG/L	/	<0,025	0,00179	<0,01	<0,01	<0,01
Fluor	mg/l	<15MG/L	/	0,5	0,49	0,445	0,3	<0,5
CN Libres	mg/l	<0,1MG/L	/	<0,01	<0,01	<0,01	<0,01	<0,01
Hydrocarbure	mg/l	<10MG/L	/	<0,1	<0,1	0,1	<0,1	<0,5
Composés halogénés AOX	mg/l	<1MG/L	/	0,02	0,057	0,16	0,12	0,29

Tableau 6 : Bilan physico chimique semestriel

3.3.1.2. Comparatif moyenne des analyses 2012 -2018

	2012	2013	2014	2015	2016	2017	2018	Unité
pH	7,94	8,20	8,23	8,67	9,05	9,30	8,70	/
Conductivité	2000,00	1959,00	3162,00	1308,33	1102,00	1133,33	1022,44	μS/cm
СОТ	97,15	75,10	140,00	52,33	26,00	35,43	31,58	mg/l
MEST	64,50	57,90	32,13	23,13	27,35	95,90	67,97	mg/l
DBO5	80,00	84,00	114,33	17,00	5,80	10,70	11,90	mg/l
DCO	446,00	285,50	502,33	204,33	113,00	127,33	140,78	mg/l
Azote	88,43	53,00	88,53	21,73	13,20	13,17	10,57	mg/l
Phosphore	0,99	0,60	1,53	0,47	0,25	0,28	0,20	mg/l
Phénols	0,22	0,01	0,01	0,01	0,01	0,01	0,01	mg/l
Métaux	1,14	4,23	2,81	1,02	0,37	0,87	0,75	mg/l
Cr 6+	0,03	0,05	0,12	0,10	0,05	0,02	0,02	mg/l
Cd	0,01	0,01	0,002	0,001	0,001	0,001	0,002	mg/l
Pb	0,14	0,03	0,01	0,03	0,03	0,01	0,01	mg/l
Hg	0,0003	0,0003	0,0004	0,0003	0,0003	0,0003	0,0004	mg/l
Arsenic	0,03	0,03	0,01	0,03	0,03	0,01	0,01	mg/l
Fluor	0,58	0,23	0,46	0,26	0,35	0,48	0,43	mg/l
CN Libres	0,07	0,01	0,01	0,01	0,01	0,01	0,01	mg/l
Hydrocarbure	0,20	0,15	0,30	0,15	0,10	0,10	0,23	mg/l
Composés halogénés AOX	0,23	0,07	0,17	0,08	0,08	0,08	0,16	mg/l

Tableau 7 : comparatif des moyennes des analyses (2012-2018)

3.3.1.3. Interprétation des résultats

Nous pouvons noter que les valeurs mesurées sont toutes inférieures aux valeurs de rejet.

Nous pouvons donc conclure que l'exploitation de l'ISDND n'a plus d'impact sur la qualité des eaux du bassin et que les dispositifs de protection installés sont étanches.

3.3.2. Canalisation sous casier

Les analyses ont été effectuées de la façon suivante :

Périodicité	Paramètres	Nombres de n	nesures par an	Remarques
		Demandées	Réalisées	
Mensuelles	pH, Conductivité débit.	12	9	
Semestrielles	DCO, DBO5, MES, fer, azote, COT, phosphore, phénols, métaux, hydrocarbures, fluor, CN, AOX	2	2	

Tableau 8 : Plan de contrôle 2018 sur la canalisation sous casier

La canalisation sous casier rejoint le réseau d'eaux pluviales au droit du casier de déchets.

3.3.2.1. Résultats d'analyse 2018

drain sous casier	Unité	juin-14	mai-17	août-17	janv-18	févr-18	mars-18	avr-18	mai-18	juin-18	juil-18	août-18	sept-18	oct-18	nov-18	déc-18
pH	/	8,5	8,6	8,1	8,2	7,95	8,2	8,1	8,1	nr	8	8,3	8,4	nr	7,9	nr
conductivité		3 448	1691	1910	2 340	1 860	2 600	2480	2 690	nr	2 970	2 420	2 170	nr	4 700	nr
СОТ	mg/l	122	31	44,4		45,4					76					
MEST	mg/l	32,9	5,3	16		170					42					
DBO5	mg/l	14	1,8	<3		5					9					
DCO	mg/l	426	110	113		174					300					
Azote	mg/l	190,1	40,5	99,9		33,7					71					
Phosphore	mg/l	1,08	0,1	0,19		0,22					0,3					
Phénols	mg/l	0,017	<0,01	<0,01		<0,01					<0,02					
Métaux totaux	mg/l	1,451	1,717	0,02		<15,86					<6,13					
Cr 6+	mg/l	<0,0002	<0,05	<0,01		0,01					<0,02					
Cd	mg/l	<0,002	<0,001	<0,002		<0,002					nr					
Pb	mg/l	<0,002	<0,025	<0,01		0,01					<0,01					
Hg	mg/l	<0,0005	<0,0003	<0,0005		<0,0005					<0,0005					
Arsenic	mg/l	<0,004	<0,025	<0,01		<0,01					<0,01					
Fluor	mg/l	0,443	0,8	<1		0,7					0,51					
CN Libres	mg/l	0,033	<0,01	<0,01		<0,01					<0,01					
Hydrocarbure	mg/l	0,1	<0,01	<0,1		<0,1					<0,5					
Composés halogénés AOX	mg/l	0,17	0,05	0,15		0,18					0,33					
débit	m3/h		0,17	0,14	0,19	0,3	0,9	0,6	0,5	0,9	0,3	0,4	0,4	0,3	0,3	0,3

Tableau 9 : suivi de la canalisation sous casier

nr – non réalisé : en juin prélèvement non réalisé – octobre et décembre : absence de préleveur du laboratoire d'analyse de Corse du Sud

3.3.2.2. Comparatif moyenne des analyses 2014 -2018

drain sous casier	2014	2015	2016	2017	2018	Unité
pH	8,50	8,40	8,55	8,07	8,13	/
Conductivité	3448,00	1974,00	1813,00	1934,67	2692,22	μS/cm
СОТ	122,00	53,00	35,50	37,70	60,70	mg/l
MEST	32,90	8,15	12,30	10,65	106,00	mg/l
DBO5	14,00	6,00	4,70	10,93	7,00	mg/l
DCO	426,00	150,00	120,50	218,33	237,00	mg/l
Azote	190,10	83,95	42,55	70,20	52,35	mg/l
Phosphore	1,08	0,38	0,14	0,15	0,26	mg/l
Phénols	0,02	0,01	0,01	0,01	0,02	mg/l
Métaux	1,45	2,53	0,88	0,87	11,00	mg/l
Cr 6+	<0,0002	0,15	0,05	0,03	0,02	mg/l
Cd	<0,002	0,001	0,001	0,002	0,002	mg/l
Pb	<0,002	0,025	0,025	0,018	0,010	mg/l
Hg	<0,0005	0,0003	0,0003	0,0004	0,0005	mg/l
Arsenic	<0,004	0,03	0,03	0,02	0,01	mg/l
Fluor	0,44	0,51	0,50	0,90	0,61	mg/l
CN Libres	0,03	0,01	0,01	0,01	0,01	mg/l
Hydrocarbure	0,10	0,01	0,01	0,06	0,30	mg/l
Composés halogénés AOX	0,17	0,08	0,09	0,10	0,26	mg/l

Tableau 10 : comparatif des moyennes d'analyses - canalisation sous casier 2014-2018

3.3.2.3. Interprétation des résultats

On peut noter:

- Une valeur en conductivité très élevée en novembre sans pouvoir corréler cette valeur avec un incident particulier (la valeur mesurée en janvier 2019 étant à contrario très basse à 1067 µS/cm).
- Une amélioration de la qualité des eaux constatée depuis la mise en place de cette analyse en 2014. Toutes les valeurs mesurées sont inférieures aux valeurs de rejet des eaux pluviales excepté les matières en suspension,
- Que les valeurs en DCO et en Azote restent élevées mais sont bien inférieure à un flux de lixiviat. Cette canalisation captant des eaux sous casier (séparées des déchets par les barrières d'étanchéité passive et active), ces valeurs peuvent être expliquées par une contamination provenant des déchets historiques du site.

3.3.3. Eaux souterraines

Périodicité	Paramètres	Nombres de r	nesures par an	Remarques
		Demandées	Réalisées	·
Mensuelles	Niveau, pH, Conductivité	12	11	
Semestrielles	DCO, DBO5, chlorures, fer, potentiel rédox, COT, phosphore, métaux totaux, NO2-, NO3-, NH4+, SO42-, NTK, Cl-, PO43-, K+, Ca2+, Mg2+, MES, AOX, PCB, HAP, BTEX, analyses bactériologiques	2	1 + 1 en contrôle inopiné	
Annuelles	Phénols	1	3	

Tableau 11 : Plan de contrôle 2018 sur les eaux souterraines

3.3.3.1. Résultats d'analyse 2018

Piézomètre 1 (aval du site – recyclerie – cf. annexe 1)

	riezomi		(a vai	uu site	10	cy cici i	•	.1. u	11110	AC 1,	<u>, </u>					
Piézomètre 1	Unité	oct-08	sept-10	août-17	janv-18	févr-18	mars-18	avr-18	mai-18	juin-18	juil-18	août-18	sept-18	oct -18 inopiné	nov-18	déc-18
Niveau piézomètrique	/	4,67		4,91	3,3	2,8	2,6	2,7	2,7	2,8	3	3,2	3,45	4,38	4,08	nr
pH	/	6,2	6,31	6,2	6,4	6,2	6,5	6,3	6,2	6,5	6,3	6,3	6,3	6,4	6,15	nr
Conductivité		1744	1664	1500	1597	1640	1529	1626	1571	1412	1456	1448	1447	1505	1470	nr
DCO	mg/l	<30	33	19		36					<30			<30		
DBO5	mg/l	<1	8	1,3		0,6					<3			<2,5		
Chlorures	mg/l	255,6	248	220		240					195			170		
Fer	mg/l		8,771	0,13		0,17					0,05			0,39		
Azote	mg/l	18	1.2	<4,56		1,5					2,7			7		
СОТ	mg/l	2	6.3	7,3		7,1					7,6			8,6		
Phosphore	mg/l	0,5	<0.05	0,03		0,02					<0,1			0,229		
BACTERIOLOGIQUE ESCHERICHIA	NPP/100ml	<38	<15	<15		<15					<15			0		
BACTERIOLOGIQUE ENTEROCOQUES	NPP/100ml	38	<15	<15		<15					77			7		
BACTERIOLOGIQUE SALMONELLA	/5L					nd					nr			abs		
Métaux	mg/l		0.055	<0,64		<0,39					<0,6			0,28		
Composés halogénés AOX	mg/l		0.19	0,11		0,11					0,1			0,14		
PCB	mg/l		<0,00008	<0,00003		<0,00003					<0,00014			<0,00003		
potentiel redox	m۷			133		177					308			4		
Nitrites	mg/l	0,22		<0,01		0,04					0,17			7,9		
Nitrates	mg/l	17,4		4		4,1					11,7			17		
Azote kjeldhal	mg/l	<1		<0,5		0,6					<3			0,8		
Ammonium NH4+	mg/l			<0,05		<0,05					<0,6			<0,05		
Sulfate SO42-	mg/l			200		230					204			210		
Potassium K+	mg/l			3,3		3,1					3,79			3,6		
Magnesium Mg2+	mg/l			64,7		70,4					78			64		
Calcium Ca2+	mg/l			83		90					68,3			82		
Orthophosphates PO43-	mg/l			<0,015		0,025					<0,1			<0,02		
MES	mg/l			22		10					3			170		
HAP	mg/l			<0,00005		<0,00005					<0,0008			<0,00005		
BTEX	mg/l			<0,0013		<0,0013					<0,0045			<0,0013		
Phénols (an)	mg/l	<0,01	0.079	<0,01		<0,01					<0,01			<0,01		

Tableau 12 : Analyses du piézomètre 1

Piézomètre 2 (aval du site - contrebas du casier déchets déplacés - cf. annexe 1)

Piézomètre 2	Unité	oct-08	sept-10	août-17	janv-18	févr-18	mars-18	avr-18	mai-18	juin-18	juil-18	août-18	sept-18	oct -18 inopiné	nov-18	déc-18
Niveau piézomètrique	/	2,6		2,89	1,6	1,45	1,5	1,5	1,5	1,5	2,6	1,6	2,2	2,42	2,28	nr
pH	/	6,55	6,53	6,7	6,8	6,6	6,9	6,7	6,4	6,8	6,6	6,7	6,7	7	6,65	nr
Conductivité		5270	3906	3550	3020	2780	2570	2670		3520	3820	3650	3380	4370	3430	nr
DCO	mg/l	74	135	47		60					83			128		
DBO5	mg/l	4,7	13,5	1,2		0,7					4			6		
Chlorures	mg/l	1384	916	750		380					676			840		
Fer	mg/l		2,478	0,034		0,074					0,02			2,6		
Azote	mg/l	26	1,3	<1,4		6,1					18,23			23		
СОТ	mg/l	13,7	19	16,2		12,2					19			51		
Phosphore	mg/l	0,1	0,2	0,03		0,01					<0,1			0,425		
BACTERIOLOGIQUE ESCHERICHIA	NPP/100ml	<58	<15	<29		<15					<38			30		
BACTERIOLOGIQUE ENTEROCOQUES	NPP/100ml	2669	93	118		<15					78			24200		
BACTERIOLOGIQUE SALMONELLA	/5L	2000	30	110		ND					nr			pré		
Métaux	mg/l		0,05	<1,3		<0,76					0,77			2,37		
Composés halogénés AOX	mg/I		0,19	0,086		0,073					0,06			0,39		
PCB	mg/l		<0,00008	<0,00003		<0,00003					<0,00014			<0,00003		
potentiel redox	mV			98		142					321			0		
Nitrites	mg/l	0,16		<0,01		<0,01					0,11			3,2		
Nitrates	mg/l	24,9		0,6		21					67,2			65		
Azote kjeldhal	mg/l	1,2		0,7		1,3					3			7		
Ammonium NH4+	mg/l			<0,05		<0,05					<0,6			0,24		
Sulfate SO42-	mg/l			490		270					495			400		
Potassium K+	mg/l			45,9		28					44,2			56		
Magnesium Mg2+	mg/l			122		76,4					147			120		
Calcium Ca2+	mg/l			230		140					197			260		
Orthophosphates PO43-	mg/l			0,045		0,026					<0,1			0,35		
MES				13		11					5,3			260		
HAP	mg/l			<0,00005		<0,00006					<0,0008			<0,00005		
BTEX	mg/l			<0,0013		<0,0013					<0,0045			<0,0013		
Phénols	mg/l	<0.010	0,055	<0,01		<0,01					<0,01			<0,01		

Tableau 13 : Analyses du piézomètre 2

Piézomètre 3 (amont du site – cf. annexe 1)

Piézomètre 3	unité	oct-08	sept-10	août-17	janv-18	févr-18	mars-18	avr-18	mai-18	juin-18	juil-18	août-18	sept-18	oct -18 inopiné	nov-18	déc-18
Niveau piézomètrique	/	7		7,84	5,5	3,8	3,6	4,6	4,7	5	5,3	6	6,2	7,3	6,83	nr
pH	/	6,26	6,61	6,8	6,7	6,4	6,5	6,3	6,4	6,7	6,4	6,4	6,3	6,5	6,15	nr
Conductivité		1343	1024	1000	918	1139	1196	1325	1076	693	980	997	1157	1033	920	nr
DCO	mg/l	<30	16	<5		<30					<30			123		
DBO5	mg/l	4	8	1		0,9					<3			<2,5		
Chlorures	mg/l	392	214	200		29					224			190		
Fer	mg/l		2,324	0,3		0,39					0,11			0,041		
Azote	mg/l	2	<1	<6,65		0,7					0,93			3,3		
СОТ	mg/l	1,1	21	1,5		6,3					<5			<10		
Phosphore	mg/l	0,1	<0.05	0,05		0,06					<0,1			1,44		
BACTERIOLOGIQUE ESCHERICHIA	NPP/100ml	78	<15	<15		<15					<15			10		
BACTERIOLOGIQUE ENTEROCOQUES	NPP/100ml	78	<15	94		30					15			590		
BACTERIOLOGIQUE SALMONELLA	/5L					ND					nr			abs		
Métaux	mg/l		0.05	<1		<1,23					0,64			0,65		
Composés halogénés AOX	mg/l		0.19	0,055		0,038					0,05			0,17		
PCB	mg/l		<0,00008	<0,00003		<0,00003					<0,00014			<0,00003		
potentiel redox	mV			114		162					320			2		
Nitrites	mg/l	0,08		0,25		0,03					<0,04			1		
Nitrates	mg/l	1,77		5,9		2,9					4,13			4,7		
Azote kjeldhal	mg/l	<1		<0,5		<0,5					<3			1,9		
Ammonium NH4+	mg/l			<0,05		<0,05					<0,6			<0,05		
Sulfate SO42-	mg/l			48		9,4					47,9			41		
Potassium K+	mg/l			2,6		2,4					2,68			2,9		
Magnesium Mg2+	mg/l			32,7		9					32,7			32		
Calcium Ca2+	mg/l			40		13					37			40		
Orthophosphates PO43-	mg/l			0,062		0,091					<0,1			<0,02		
MES				8		4					3,9			1700		
НАР	mg/l			<0,00005		<0,00005					<0,0008			<0,00005		
BTEX	mg/l			<0,0013		<0,0013					<0,0045			<0,0013		
Phénols	mg/l	<0.010	0.055	<0,01		<0,01					<0,01			<0,01		

Tableau 14 : Analyses du piézomètre 3

Forage (aval du site – cf. annexe 1)

Forage	unité	mai-16	sept-16	août-17	janv-18	févr-18	mars-18	avr-18	mai-18	juin-18	juil-18	août-18	sept-18	oct -18 inopiné	nov-18	déc-18
pH	/	6,4	6,9	6,7	NR	6,5	6,8	6,4	6,4	6,6	6,7	6,5	6,3	6,3	6,35	nr
Conductivité		1576	1544	1700		1659	1667	1685	1663	1638	1650	1543	1276	1655	1600	nr
DCO	mg/l	17	30	14		<30					<30			<30		
DBO5	mg/l	<1	<0,5	0,5		<0,5					<3			<2,5		
Chlorures	mg/l	272,3	270	270		240					239			200		
Fer	mg/l	<0,01	0,006	1,4		0,033					0,05			0,19		
Azote	mg/l	5,58	7,8	<26,51		7,8					<9,97			9,2		
СОТ	mg/l	5	5,4	5,8		5,4					7,1			6,2		
Phosphore	mg/l	<0,05	0,05	<0,01		<0,01					<0,1			<0,05		
BACTERIOLOGIQUE ESCHERICHIA	NPP/100ml		illisible	<15		<15					<15			10		
BACTERIOLOGIQUE ENTEROCOQUES	NPP/100ml		2	<15		<15					<15			30		
BACTERIOLOGIQUE SALMONELLA	/5L					ND					nr			abs		
Métaux	mg/l		3,173	<2,3		<0,53					<0,7			0,09		
Composés halogénés AOX	mg/l		0,076	0,067		0,046					0,09			0,094		
PCB	mg/l		<0,00003	<0,00003		<0,00003					<0,00014			<0,00003		
potentiel redox	mV			84		166					305			-1		
Nitrites	mg/l	0,02	<0,01	<0,01		0,07					<0,04			1,1		
Nitrates	mg/l	3,96	24,4	26		32					27,3			37		
Azote kjeldhal	mg/l	1,6	2,5	<0,5		0,6					<3			0,5		
Ammonium NH4+	mg/l			0,08		<0,05					0,9			<0,05		
Sulfate SO42-	mg/l			240		240					244			260		
Potassium K+	mg/l			3,4		3,2					3,51			3,6		
Magnesium Mg2+	mg/l			69,7		67,4					65,3			68		
Calcium Ca2+	mg/l			100		100					82,9			100		
Orthophosphates PO43-	mg/l			<0,015		<0,015					<0,03			1,3		
MES				10		9					2,4			4,7		
HAP	mg/l			<0,00005		<0,00005					<0,0008			<0,00005		
BTEX	mg/l			<0,0013		<0,0013					<0,0013			<0,0013		
Phénols	mg/l		<0,01	<0,01		<0,01					<0,01			<0,01		

Tableau 15: Analyses forage

3.3.3.2. Tableau comparatif – moyenne des analyses 2011-2018

• Piézomètre 1 (aval du site – recyclerie – cf. annexe 1)

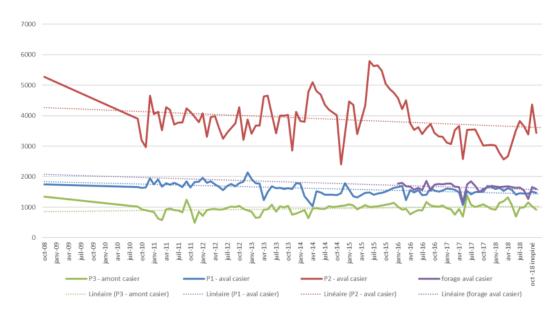
P1 - moyenne annuelle	2011	2012	2013	2014	2015	2016	2017	2018	Unité
рН	6,30	6,25	6,30	6,38	6,29	6,18	5,95	6,32	/
Conductivité	1716,01	1788,24	1647,21	1393,39	1474,55	1514,75	1515,55	1518,27	μS/cm
DCO	31,50	25,00	29,00	17,50	22,50	26,00	29,00	32,00	mg/l
DBO5	12,10	1,00	2,00	1,20	2,60	1,10	1,15	2,03	mg/l
Chlorures	276,00	261,35	230,70	208,35	235,75	228,55	225,00	201,67	mg/l
Fer	3,69	3,95	5,92	0,90	0,17	0,23	0,22	0,20	mg/l
Azote	5,73	7,60	3,15	2,00	2,15	2,20	3,43	3,73	mg/l
СОТ	3,90	5,55	4,35	3,65	6,35	6,80	7,30	7,77	mg/l
Phosphore	0,05	0,06	0,07	0,32	0,05	0,06	0,06	0,12	mg/l
BACTERIOLOGIQUE ESCHERICHIA	76,00	7101,00	15,00	15,00	30,00	1927,00	300,00	10,00	NPP/100ml
BACTERIOLOGIQUE ENTEROCOQUES	651,00	15,00	15,00	15,00	15,00	347,00	<15	33,00	NPP/100ml
Métaux	0.055				2,03	1,22	0,40	0,42	mg/l
Composés halogénés AOX	0.19				0,08	0,12	0,11	0,12	mg/l
PCB	<0,00008				<0,00007	<0,00003	<0,00003	<0,00003	mg/l
potentiel redox							133	163,00	mV
Nitrites							<0,01	2,70	mg/l
Nitrates							4	10,93	mg/l
Azote kjeldhal							<0,5	1,47	mg/l
Ammonium NH4+							<0,05	0,23	mg/l
Sulfate SO42-							200	214,67	mg/l
Potassium K+	nouvelle	sanalyse	s introdui	tes dans	l'arrêté de	mai 2017	3,3	3,50	mg/l
Magnesium Mg2+							64,7	70,80	mg/l
Calcium Ca2+							83	80,10	mg/l
Orthophosphates PO43-							<0,015	0,05	mg/l
MES							22	61,00	mg/l
HAP							<0,00005	<0,00005	mg/l
BTEX							<0,0013	<0,0013	mg/l
Phénols	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	mg/l

Piézomètre 2 (aval du site – contrebas du casier déchets déplacés – cf. annexe 1)

P2 - moyenne annuelle	2011	2012	2013	2014	2015	2016	2017	2018	Unité
pH	6,67	6,66	6,59	6,73	6,60	6,65	6,71	6,71	/
Conductivité	3962,49	3486,43	3631,66	3937,15	4888,82	3755,25	3233,22	3321,00	μS/cm
DCO	66,50	45,00	65,50	72,50	61,00	54,00	70,00	90,33	mg/l
DBO5	13,10	1,20	10,00	1,30	1,85	1,00	4,50	3,57	mg/l
Chlorures	849,00	874,65	663,45	720,45	1181,05	685,95	663,75	632,00	mg/l
Fer	5,56	1,14	0,24	1,08	0,12	0,55	2,08	0,90	mg/l
Azote	17,06	6,35	22,80	19,65	13,00	5,05	2,80	15,78	mg/l
СОТ	9,85	9,90	15,50	20,30	38,10	15,90	14,55	27,40	mg/l
Phosphore	0,08	0,05	0,05	0,06	0,05	0,05	0,07	0,18	mg/l
BACTERIOLOGIQUE ESCHERICHIA	15,00	10687,00	15,00	30,00	177,00	5352,00	3305,00	27,67	NPP/100ml
BACTERIOLOGIQUE ENTEROCOQUES	46,00	94,00	15,00	77,00	110,00	627,00	215,00	8097,67	NPP/100ml
Métaux	0,05				2,03	0,42	1,22	1,30	mg/l
Composés halogénés AOX	0,19				0,08	0,15	0,09	0,17	mg/l
PCB	<0,00008				<0,00007	<0,00003	<0,00003	<0,00003	mg/l
potentiel redox							98	154	mV
Nitrites							<0,01	1,11	mg/l
Nitrates							0,6	51,07	mg/l
Azote kjeldhal							0,7	3,77	mg/l
Ammonium NH4+							<0,05	0,30	mg/l
Sulfate SO42-							490	388,33	mg/l
Potassium K+	nouvelle	s analyses	introduit	es dans l	'arrêté de	mai 2017	45,9	42,73	mg/l
Magnesium Mg2+							122	114,47	mg/l
Calcium Ca2+							230	199,00	mg/l
Orthophosphates PO43-						0,045	0,16	mg/l	
MES							13	92,10	mg/l
HAP							<0,00005	<0,00005	mg/l
BTEX							<0,0013	<0,0013	mg/l
Phénols	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	mg/l

Piézomètre 3 (amont du site – cf. annexe 1)

	2011	2012	2013	2014	2015	2016	2017	2018	Unité
pH	6,43	6,41	6,34	6,39	6,38	6,40	6,48	6,43	/
Conductivité	893,00	884,47	880,64	908,77	1054,18	1010,67	979,30	1039,45	μS/cm
DCO	52,50	15,00	12,00	18,50	15,00	23,50	12,00	61,00	mg/l
DBO5	11,15	1,00	1,45	1,00	1,30	1,15	2,05	2,13	mg/l
Chlorures	154,00	226,25	184,35	173,20	234,80	206,90	199,15	147,67	mg/l
Fer	20,75	1,59	0,38	2,82	0,40	0,76	0,29	0,18	mg/l
Azote	2,24	1,00	1,25	2,00	1,85	4,25	4,33	1,64	mg/l
СОТ	2,65	1,25	2,80	1,45	1,95	1,40	2,20	7,10	mg/l
Phosphore	0,27	7,53	0,05	0,22	0,17	0,09	0,05	0,53	mg/l
BACTERIOLOGIQUE ESCHERICHIA	61,00	386,00	127,00	77,00	1024,00	9826,00	<15	<15	NPP/100ml
BACTERIOLOGIQUE ENTEROCOQUES	728,00	15,00	386,00	15,00	3225,00	15,00	54,50	211,67	NPP/100ml
Métaux	0,05				0,52	0,45	1,24	0,84	mg/l
Composés halogénés AOX	0,19				0,05	0,02	0,055	0,09	mg/l
PCB	<0,00008				<0,00007	<0,00003	<0,00003	<0,00003	mg/l
potentiel redox							114	161,33	mV
Nitrites							0,25	0,36	mg/l
Nitrates							5,9	3,91	mg/l
Azote kjeldhal							<0,5	1,80	mg/l
Ammonium NH4+							<0,05	0,23	mg/l
Sulfate SO42-							48	32,77	mg/l
Potassium K+	ouvelles	analyses	introdu	ites dan	s l'arrêté d	le mai 201 [.]	2,6	2,66	mg/l
Magnesium Mg2+							32,7	24,57	mg/l
Calcium Ca2+							40	30,00	mg/l
Orthophosphates PO43-						0,062	0,07	mg/l	
MES							8	569,30	mg/l
НАР							<0,00005	<0,00005	mg/l
BTEX							<0,0013	<0,0013	mg/l
Phénols	0,01	0,01	0,01	0,01	0,01	0,01	<0,01	<0,01	mg/l


Forage (aval du site – cf. annexe 1)

	2016	2017	2018	Unité
pH	6,55	6,64	6,49	/
Conductivité	1694,25	1651,90	1603,60	μS/cm
DCO	23,50	23,00	<30	mg/l
DBO5	0,75	0,50	2,00	mg/l
Chlorures	271,15	257,00	226,33	mg/l
Fer	0,01	0,72	0,09	mg/l
Azote	6,69	8,60	8,99	mg/l
СОТ	5,20	5,85	6,23	mg/l
Phosphore	0,05	0,03	0,05	mg/l
BACTERIOLOGIQUE ESCHERICHIA	illisible	<15	13,33	NPP/100ml
BACTERIOLOGIQUE ENTEROCOQUES	2,00	<15	20,00	NPP/100ml
Métaux	3,17	1,20	0,44	mg/l
Composés halogénés AOX	0,08	0,067	0,08	mg/l
PCB	<0,00003	<0,00003	<0,00003	mg/l
potentiel redox		84	156,67	mV
Nitrites	0,02	<0,01	0,40	mg/l
Nitrates	14,18	26	32,10	mg/l
Azote kjeldhal	2,05	<0,5	1,37	mg/l
Ammonium NH4+		0,08	0,33	mg/l
Sulfate SO42-		240	248,00	mg/l
Potassium K+		3,4	3,44	mg/l
Magnesium Mg2+		69,7	66,90	mg/l
Calcium Ca2+		100	94,30	mg/l
Orthophosphates PO43-		<0,015	0,45	mg/l
MES		10	5,37	mg/l
НАР		<0,0005	<0,0005	mg/l
BTEX		<0,0013	<0,0013	mg/l
Phénols	<0,01	<0,01	<0,01	mg/l

3.3.3.3. Courbes d'évolution de la conductivité

Suivi Conductivité

Graphique 2 : Evolution de la conductivité des piézomètres et du forage

3.3.3.4. Interprétation des résultats

On peut noter que:

- Les valeurs mesurées sur les piézomètres et le forage situés en aval sont globalement supérieurs aux valeurs mesurées sur le piézomètre amont et plus particulièrement au niveau du piézomètre 2 pour les paramètres organiques, minéraux (K+, Mg2+, Ca2+), sulfates, conductivité et chlorures.
- La conductivité présente une forte variabilité au niveau des trois piézomètres (même pour le piézomètre 3 situé en amont hydraulique du casier et donc non soumis à une potentiel contamination du site) mais les valeurs moyennes depuis le démarrage de l'exploitation sont inférieures aux valeurs de référence d'octobre 2008 (avant la mise en exploitation du casier en 2010). La valeur de conductivité du piézomètre 2 est d'ailleurs revenue sous la valeur moyenne après une hausse constatée en 2015. On peut de plus remarquer que les tendances sur les trois ouvrages en aval sont à la baisse pour ce paramètre.
- Les valeurs mesurées en contrôles inopinés sont comparables aux valeurs mesurées en autosurveillance exceptées pour les MEST au niveau des piézomètre 1,2 et 3 dont les valeurs sont entre 50 et 500 fois supérieures. Aux vues des analyses précédentes, nous pouvons suspecter une erreur lors de l'analyse sur ce paramètre.

Ces résultats démontrent que les eaux souterraines du site sont influencées par une contamination provenant de déchets historiques ce qui vient conforter les résultats de l'étude hydrogéologique fournie à la DREAL en décembre 2014.

On peut cependant remarquer que sur les paramètres soumis à des valeurs de rejet pour les eaux pluviales (DCO, COT, DBO5, Azote, Phosphore, hydrocarbure, Phénols, métaux et composés halogéné), les concentrations mesurées sont inférieures aux valeurs seuils de rejet.

3.3.4. Eaux superficielles – Ruisseau du Vetricelli (amont et aval du rejet du perméat)

Il est prévu deux points de mesure en amont et en aval des points de rejet des eaux du site dans le Vetricelli.

Périodicité	Paramètres	Nombres de	e mesures	Remarques
		Demandées	Réalisées	
Semestrielles	Conductivité, pH, DCO, DBO5, Chlorures, Fer, Azote, COT, Phosphore, bactériologie, phénols, Florures, Cyanures	2	1	Pas d'écoulement lors du prélèvement programmé en juillet 2018

3.3.4.1. Résultats d'analyse 2018

	Unité	fev et avril 2018 amont	fev et avril 2018 aval	delta amont/aval fv et avril 2018
рН	unité pH	7,9	7,5	-0,4
Conductivité	μS/cm	1190	1140	-50
DCO	mg/l	47	57	10
DBO5	mg/l	√ 3	<3	0
Chlorures	mg/l	250	240	-10
Fer	mg/l	0,03	0,12	0,09
Azote	mg/l	V 2	<1,7	-0,3
СОТ	mg/l	6,2	6,2	0
Indice de phénols	mg/l	<0,01	<0,01	0
CN libres	mg/l	<0,01	<0,01	0
Florures	mg/l	0,3	0,4	0,1
Phosphore	mg/l	0,03	0,04	0,01
BACTERIOLOGIQUE ESCHERICHIA	NPP/100ml	61	177	116
BACTERIOLOGIQUE ENTEROCOQUES	NPP/100ml	77	230	153
sulfates	mg/l	81	73	-8
Azote kjeldhal	mg/l	<0,5	<0,5	0
Nitrites	mg/l	<0,07	<0,07	0
Nitrates	m g/l	1,4	1,1	-0,3

<u>Tableau 16 : Analyses effectuées sur le Ruisseau du Vetricelli (amont et aval du rejet des perméats)</u>

3.3.4.2. Interprétation des résultats

Nous pouvons encore une fois noter que les analyses bactériologiques présentent une variabilité très forte sans doute due à la présence d'animaux autour du Vetricelli.

On peut constater sur les résultats que le rejet des perméats n'a pas d'impact négatif sur la qualité des eaux du Vetricelli car les marqueurs de contamination sont équivalents en aval et en amont du point de rejet.

3.3.5. Eaux superficielles – Rizzanese

Le site est situé en amont du ruisseau de Rizzanese qui constitue le milieu récepteur de la zone où sont déversées les eaux pluviales du site. Il est prévu deux points de mesure encadrant l'exutoire du Vetricelli dans le Rizzanese un en amont et un en aval.

Périodicité	Paramètres	Nombres de	mesures	Remarques
		Demandées	Réalisées	
Semestrielles	Conductivité, pH, DCO, DBO5, Chlorures, Fer, Azote, COT, Phosphore, bactériologie, phénols, Florures, Cyanures et IBGN	2	2	

Tableau 17 : Plan de contrôle 2018 sur le Ruisseau du Rizzanese

3.3.5.1. Résultats d'analyse 2018

Rizzanese	Unité	février 2018 amont	Février 2018 aval	delta février 2018	juillet 2018 amont	juillet 2018 aval	delta juillet 2018
рН	unité pH	7,2	7,2	0	7,4	7,2	-0,2
Conductivité	μS/cm	166	163	-3	217	224	7
DCO	mg/l	<30	<30	0	<30	<30	0
DBO5	mg/l	1,1	1,2	0,1	<3	<3	0
Chlorures	mg/l	29	29	0	29,4	29,7	0,3
Fer	mg/l	0,063	0,059	-0,004	0,16	0,11	-0,05
Azote	mg/l	0,3	0,059	-0,241	<3,32	<3,36	0,04
сот	mg/l	2,6	2,5	-0,1	2,3	2,1	-0,2
Indice de phénols	mg/l	<0,01	<0,01	0	<0,01	<0,01	0
CN libres	mg/l	<0,01	<0,01	0	<0,01	<0,01	0
Florures	mg/l	0,08	0,08	0	<0,5	<0,5	0
Phosphore	mg/l	<0,01	<0,01	0	<0,1	<0,01	0
E coli	NPP/100ml	289	176	-113	549	illi	/
BACTERIOLOGIQUE ENTEROCOQUES	NPP/100ml	15	61	46	212	125	-87
sulfates	mg/l	6,1	6	-0,1	14,2	8,21	-5,99

Tableau 18 : Analyses effectuées sur le Ruisseau du Rizzanese (amont et aval de la confluence du Vetricelli)

Illi: valeur illisible lors de l'analyse

3.3.5.2. Interprétation des résultats

On peut constater que les paramètres sont équivalents entre le point l'amont et l'aval de la confluence du Vetricelli dans le Rizzanese. Nous pouvons encore une fois noter que les analyses bactériologiques présentent une variabilité très forte sans doute due à la présence d'animaux autour du Rizzanese.

Ces résultats ne démontrent pas de contamination du Rizzanese par les eaux du site.

3.3.5.3. Résultats IBGN

Deux campagnes ont été réalisées en juin et en octobre 2018, le rapport est fourni en annexe 7. Les deux campagnes ont conclu que le Rizzanese présente une eau de bonne qualité en amont et une eau de qualité moyenne en aval du Vetricelli. Cette baisse entre les deux points de mesure s'explique par une modification hydromorphologique du cours d'eau (pente plus faible, ensoleillement plus important, zone calmes).

		IBG	État
Juin 2018	Amont	14	Bonne qualité
	Aval	12	Qualité moyenne
Octobre 2018	Amont	15	Bonne qualité
	Aval	11	Qualité moyenne

Tableau 19: Indice IBGN

3.3.6. Lixiviats

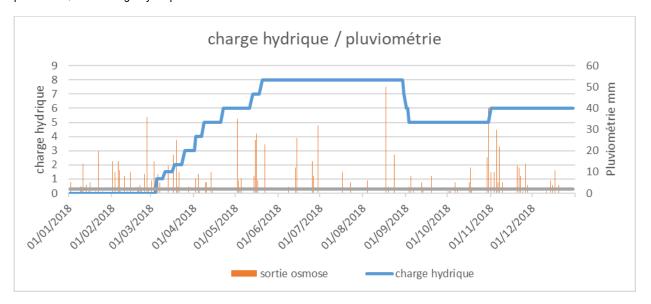
3.3.6.1. Bassin lixiviat

Périodicité	Paramètres	Nombres de mesures par an		·		Remarques
		Demandées	Réalisées			
Annuelle	Conductivité, pH, DCO, DBO5, MES, Azote, COT, Phosphore, phénols, Florures, Cyanures, Métaux, Chrome héxavalent, Cadmium, Plomb, Mercure, Arsenic, Florures, hydrocarbures, AOX, chlorures	1	1+8 partielles	Une analyse réglementaire et 8 analyses partielles de suivi		

Tableau 20 : Plan de contrôle 2018 sur le bassin de lixiviats

3.3.6.1.1. Résultats d'analyse 2018

Bassin Lixiviat	Unité	août-17	janv-18	févr-18	mars-18	mai-18	juin-18	Juil-18	août-18	sept-18	nov-18
рН	/	8,4	8,8	8,85	9	9,2	8,3	8,6	8,5	8,4	8,3
Conductivité	μS/cm	41200	41300	37500	36400	33900	32300	35100	35200	39500	36100
СОТ	mg/l	5640	3416	4250	3756	2756	2740	1860	3044	3312	4350
MEST	mg/l	81	360	86	360	134,7	153	850	415	466	er
DBO5	mg/l	260	79	86	71	37	35	5,8	130	170	40
DCO	mg/l	13100	12280	11800	11620	11400	8057	13000	14800	9753	10700
Azote	mg/l	1872,6	3096,9	2830	2642,8	2499,5	1815	1920	5738,4	1669,5	1880
Phosphore	mg/l	74		53							
Phénols	mg/l	0,1		0,05							
Métaux	mg/l	6,03									
fe	mg/l	11		20							
Cr 6+	mg/l	0,89		0,91							
Cd	mg/l	<0,002		<0,002							
Pb	mg/l	0,03		0,06							
Hg	mg/l	<0,0005		<0,0005							
Arsenic	mg/l	0,17		0,11							
Fluor	mg/l	<10		8,8							
CN Libres	mg/l	<0,1		0,05							
Hydrocarbure	mg/l	<0,1		<0,1							
Composés halogénés AOX	mg/l	<10		3							
Chlorures	mg/l	8500	7814,1	8200	6980	6360	6589	8240	5770	7952	6700


Tableau 21: Analyses du bassin lixiviat

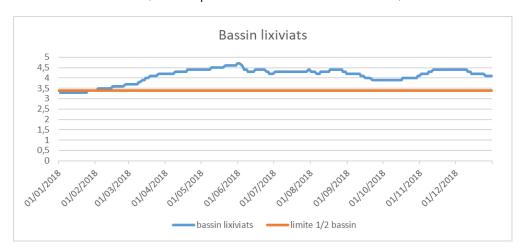
Er : erreur du laboratoire la valeur indiquée dans le rapport est de 33 kg/l ce qui est incohérent avec les valeurs mesurées précédemment (au maximum de 1,1 kg/l)

3.3.6.1.2. Charge hydrique en fond de casier

La charge hydrique en fond de casier est mesurée dans le regard situé sur le point bas du casier. Conformément à l'arrêté préfectoral, cette charge hydrique doit être inférieure à 30 cm en fond de casier.

Graphique 3 : Courbe de suivi de la charge hydrique en fond de casier

En raison de la pluviométrie exceptionnelle de l'année 2018 et des pannes sur le traitement des lixiviats, la charge hydrique en fond de casier n'a pas pu être respectée à partir de fin mars 2018.


La remise en route en continu du traitement des lixiviats en novembre 2018 doit permettre de faire descendre cette charge dans le courant du premier semestre 2019 après mise en conformité de la hauteur réglementaire du niveau du bassin de collecte des lixiviats.

Compte tenu de la configuration du fond de casier et d'un volume libre estimé à 10% dans les déchets, le volume de lixiviat stocké dans le casier à fin 2018 est estimé à 600 m3.

3.3.6.1.3. Volume de lixiviat dans le bassin

La mesure de la hauteur d'eau dans le bassin de collecte des lixiviats est enregistrée quotidiennement. Conformément à l'arrêté préfectoral, le bassin de collecte des lixiviats doit disposer en permanence d'un volume disponible correspondant à la moitié de son volume totale. Pour le site de Viggianello, ce volume correspond à une hauteur mesurée dans le bassin de 3,4 mètres pour une hauteur de bassin totale de 5,2 mètres.

Graphique 4 : Courbe de suivi du niveau dans le bassin de collecte des lixiviats

Compte tenu des pluies exceptionnelles et des pannes du traitement des lixiviats, la limite réglementaire a été dépassée à partir de début février 2018. Cependant, une marge de sécurité de 440 m3 a toujours été conservée dans le bassin permettant d'absorber une pluie de l'ordre 60mm.

La remise en route en continu du traitement des lixiviats en novembre 2018 doit permettre de faire redescendre le niveau du bassin dans le courant du premier semestre 2019.

3.3.6.2. Traitement des lixiviats

3.3.6.2.1. Traitement par osmose inverse

Les volumes de lixiviats générés annuellement, qui ont été sous-estimé lors de la réalisation du site, nous obligent à mettre en place un traitement des lixiviats tout au long de l'année. Le procédé retenu est un traitement des lixiviats par osmose inverse.

Le volume de lixiviats traité et rejeté dans le milieu naturel en 2018 est de 3 645 m3 (cf. tableau ci-dessous).

	2018
Lixiviat entrant (m3)	8497
Perméat (m3)	3645
concentrat (m3)	4852
taux de conversion %	43

Tableau 22 : traitement des lixiviats 2018

Le lixiviat passe à travers une membrane filtrante par différence de pression. Il est alors séparé en deux phases : le lixiviat traité qui, après augmentation du pH et le lixiviat concentré qui lui est renvoyé dans le bassin de lixiviats. Le taux de conversion est descendu en moyenne à 43%.

3.3.6.2.2. Suivi du perméat

Périodicité	Paramètres	Nombres de mesures		Remarques
		Demandées	Réalisées	
trimestrielle	DCO, DBO5, MES, Azote, COT, Phosphore, Azote total et kjeldhal, Nitrites et Nitrates, phénols, Florures, Cyanures, Métaux, Chrome héxavalent, Cadmium, Plomb, Mercure, Arsenic, Florures, hydrocarbures, AOX	4	3	Le fonctionnement discontinu de l'osmose de mars à mai n'a pas permis de programmer une analyse trimestrielle

Tableau 23 : Plan de contrôle 2018 sur le perméat

			æ	æ	89
			févr-18	juil-18	nov-18
Rejet Perméats	Unité	Valeurs limites	fé	ų	С .
pH	/	/	6,4	6,7	6,5
Conductivité			275	1590	1670
СОТ	mg/l	<10mg/l	0,6	0,6	0,8
MEST	mg/l	< 2 mg/l	<2	<2	<2
DBO5	mg/l	< 10 mg/l	<3	<3	<3
DCO	mg/l	< 50mg/l	<30	<30	<30
Azote	mg/l	< 20 mg/l si flux >2,5kg/j	7,28	9,88	5,9
Phosphore	mg/l	<1 mg/l	0,03	<0,01	<0,01
Phénols	mg/l	<0,03 mg/l	<0,01	<0,01	<0,01
Métaux	mg/l	<1 MG/L	0,27	<0,27	<0,09
Cr 6+	mg/l	<0,05 MG/L	<0,01	<0,01	<0,01
Cd	mg/l	<0,02 MG/L	<0,002	<0,01	<0,002
Pb	mg/l	<0,05 MG/L	<0,01	<0,01	<0,01
Hg	mg/l	<0,008 MG/L	<0,0005	<0,0005	<0,0005
Arsenic	mg/l	<0,05 MG/L	<0,01	<0,01	<0,01
Fluor	mg/l	<1,5 MG/L	<0,1	<0,5	<0,1
CN Libres	mg/l	<0,05 MG/L	<0,01	<0,01	<0,01
Hydrocarbure	mg/l	<1 MG/L	<0,1	<0,5	<0,1
Composés halogénés AOX	mg/l	<0,1 MG/L	<0,01	0,06	0,28
Nitrites	mg/l	1	0,45	0,38	<0,07
Nitrates	mg/l	1	1,1	<1	<1

Tableau 24 : Résultats d'analyses campagne de traitement 2018

Nous pouvons remarquer un seul dépassement de seuil en novembre sur le paramètre AOX. Cette valeur ne semble encore un fois pas cohérente avec les valeurs habituelles mesurées.

3.3.6.2.3. Performances attendues du traitement d'osmose

En fonction de la dernière analyse complète du bassin lixiviat de février 2018 et de la dernière analyse du perméat de juillet 2018, nous pouvons établir les performances minimales en fonction des valeurs seuils ainsi que les performances réelles de traitement.

	Valeurs limites APC	bassin lixiviat février 2018	Perméat juillet 2018	performance minimale de traitement %	performance réelle de traitement (bassin janvier / perméat juin)
СОТ	<10mg/l	4250	0,6	99,8	100,0
MEST	< 2 mg/l	86	<2	97,7	97,7
DBO5	< 10 mg/l	86	<3	88,4	96,5
DCO	< 50mg/l	11800	<30	99,6	99,7
Azote	< 20 mg/l si flux >2,5kg/j	2830	7,28	99,3	99,7
Phosphore	<1 mg/l	53	0,03	98,1	99,9
Phénols	<0,03 mg/l	0,05	<0,01	40,0	80,0
Métaux	<1 MG/L	<32,95	0,27	97,0	99,2
Cr 6+	<0,05 MG/L	0,91	<0,01	97,5	99,5
Cd	<0,02 MG/L	<0,002	<0,002	conforme sans traitement	conforme sans traitement
Pb	<0,05 MG/L	0,06	<0,01	conforme sans traitement	conforme sans traitement
Hg	<0,008 MG/L	<0,0005	<0,0005	conforme sans traitement	conforme sans traitement
Arsenic	<0,05 MG/L	0,11	<0,01	54,5	90,9
Fluor	<1,5 MG/L	8,8	<0,1	83,0	98,9
CN Libres	<0,05 MG/L	0,05	<0,01	conforme sans traitement	conforme sans traitement
Hydrocarbure	<1 MG/L	<0,1	<0,1	conforme sans traitement	conforme sans traitement
Composés halogénés AOX	<0,1 MG/L	3	<0,01	96,7	99,7

3.3.6.2.4. Traitement des lixiviats par aération

La mise en place d'aérateurs en 2013 a permis de remettre en suspension les sédiments. Cette aération engendre la diminution de la DBO5 et de la DCO en facilitant la dégradation de certains éléments par des bactéries aérobies. Le lixiviat ainsi mélangé permet d'avoir des analyses plus représentatives de l'ensemble du bassin.

4. Gestion du biogaz

4.1. BILAN DE FONCTIONNEMENT

Le prolongement du réseau biogaz a été mis en place début 2016. La torchère a été mise service le 16 avril 2016.

A partir du 11 novembre 2017, une nouvelle torchère a été installée sur le site. Cet équipement permet d'évaporé les perméats traités issus de l'osmose pour respecter les périodes d'interdiction de rejet dans le milieu extérieur. La torchère existante a été conservée pour assurer un traitement du biogaz en cas de maintenance ou de panne de la nouvelle installation.

Sur l'année 2018, le bilan de fonctionnement du traitement du biogaz est le suivant :

		total 2018
	heures de fonctionnement	3 339
Torchère - Evaporateur	volume biogaz	740 281
	volume perméat évaporé	461,5
torchère de secours	heures de fonctionnement	1 717
torchere de secours	volume biogaz	223 136
	volume biogaz total traité	963 417
	taux de disponibilité	58%
	taux de valorisation *	70%

^{*} taux de valorisation selon l'ancienne formule de calcul conformément à la circulaire du 3 juillet 2018 sur la TGAP.

Le taux de disponibilité des installations de traitement s'établi à 58% sur la période. Ce taux est dû :

- Aux travaux de modifications du réseau de biogaz pour lesquels le réseau a dû être fermé totalement ou partiellement,
- A la montée en charge du casier en lixiviat entraînant une baisse de la production et un appauvrissement en méthane.

Depuis la date de mise en service, les torchères ont fonctionné 18 956 heures et ont brûlé **3 506 619** Nm3 de gaz soit un débit moyen de 185 Nm3/h/. Il a été évaporé 670 m3 de perméat.

4.2. RESULTATS D'ANALYSE

Périodicité	Paramètres	Nombres de mesures par an		Remarques
		Demandées	Réalisées	
Semestrielle	CO, HF, SO2 et HCl	1	1	Jusqu'à janvier 2018
Trimestrielle	SO2 et Nox	3	1	A partir de février 2018 selon courrier d'accord sur la modification non substantielle de mise en
Semestrielle	CO, Poussières, COVNM, Cd, Ti, Hg, As, Se, Te, Pb, Sb, Cr,Co, Cu, Sn, Mn, Ni, V et Zn	1	1	place d'une torchère/évaporateur. Seule une analyse trimestrielle a pu être programmée en décembre après reprise en continu du traitement.

Les résultats de l'analyse semestrielle de janvier et décembre 2018 sont indiqués ci-dessous.

paramètres analysés	Unité	Seuil selon AP	Seuil selon courrier	janv-18	déc-18
CO (monoxyde de carbone)	mg/m3	150	250	90,84	52,98
SO2	mg/m3	300	110	112	32,47
Poussières	mg/Nm3		5		2,6
COVNM (Composants organiques volatils non-					
méthaniques)	mgC/Nm3		50		1,79
NO x (oxydes d'azote)	mgNO 2/Nm3	sans seuil	100	51,8	20,4
Cd gazeux et particulaires, sans SD	μg/Nm3		50		0,13
Tl gazeux et particulaires, sans SD	μg/Nm3		50		0
Hg (mercure), sans SD	μg/Nm3		50		0
Cd + Hg + Tl gazeux et particulaires, sans SD	μg/Nm3		100		0,13
As + Se + Te gazeux et particulaires, sans SD	μg/Nm3		1000		0
Pb gazeux et particulaires, sans SD	μg/Nm3		1000		4,76
Sb gazeux et particulaires, sans SD	μg/Nm3		20000		4,86
Cr gazeux et particulaires, sans SD	μg/Nm3		20000		68,8
Co gazeux et particulaires, sans SD	μg/Nm3		20000		2,24
Cu gazeux et particulaires, sans SD	μg/Nm3		20000		90,9
Sn gazeux et particulaires, sans SD	μg/Nm3		20000		3,16
Mn gazeux et particulaires, sans SD	μg/Nm3		20000		46,7
Ni gazeux et particulaires, sans SD	μg/Nm3		20000		418
V gazeux et particulaires, sans SD	μg/Nm3		20000		0,38
Zn gazeux et particulaires, sans SD	μg/Nm3		20000		540
HCI	mg/Nm3	sans seuil		2,9	

Tableau 25 : Résultat du contrôle de fumée torchère -2018

Les résultats d'analyses des émissions sont conformes.

5. Gestion des espaces verts

Le débroussaillage des zones enherbées de l'ISDND a été réalisé dès le printemps sur la totalité du site afin de limiter les risques d'incendies durant la période estivale.

L'arrosage des plants du site se fait par gravité à partir du château d'eau situé sur le haut du site alimenté par un forage.

Il a été prélevé 1 838 m3 dans les eaux souterraines à partir du forage situé à l'entrée du site.

6. Suivi réglementaire

6.1. INSPECTIONS DE LA DREAL

La DREAL a réalisé une inspection inopinée le 6 mars 2018 dont l'objectif était de contrôler les conditions d'admission des déchets sur le site. La DREAL a conclu à la conformité des déchets apportés dans le casier.

Les rapports semestriels d'analyse ont été envoyés par le SYVADEC conformément à l'arrêté préfectoral.

6.2. CSS

La Commission de Suivi de Site (CSS) de VIGGIANELLO a été créée en mai 2015 (venant remplacer la CLIS déjà créée auparavant). Cette commission ne s'est pas réunie en 2018.

6.3. EXTENSION DE LA CAPACITE DU SITE

Le Dossier de Demande d'Autorisation d'Exploiter (DDAE) a été déposé en décembre 2017. La complétude du dossier a été actée le 24 avril 2018.

L'enquête publique s'est déroulée du 26 novembre au 9 janvier 2019 et une réunion publique de présentation a eu lieu le 5 décembre 2018.

La décision sur ce projet devrait être rendue en mars 2019.

6.4. CONTROLES PERIODIQUES

- Vérification électrique périodique en février 2018.
- Vérification du pont bascule en novembre 2018.
- vérification du portique de détection de la radioactivité en novembre 2018

7. Sécurité Environnement

7.1. INCIDENTS

Listing des incidents survenus au cours de l'année

Incidents	date
Renversement camion Alta Rocca	31/08/2018
Plaintes odeurs	25/10/2018

Tableau 26 : liste des incidents répertoriés en 2018

Ces trois incidents n'ont pas eu d'impact sur l'exploitation de l'ISDND.

Retour d'expérience

Renversement camion de l'Alta Rocca - 31/08/2018

Un camion s'est renversé lors de son déchargement dans le casier. Le camion a été stocké à la périphérie du quai de déchargement avant d'être évacué par la communauté de communes.

Signalement de nuisances olfactives - 25/10/2018

Un signalement oral a été fait par les élus de la communauté de commune auprès du SYVADEC pour des nuisances olfactives ressenties sur la commune de Propriano en octobre 2018. Les investigations n'ont pas permis d'identifier les sources potentielles de ces odeurs sachant qu'il n'y avait pas d'opérations particulières demandant de déplacer des déchets et que les recouvrements étaient bien réalisés de façon bi-hebdomadaire conformément aux demandes de la DREAL.

7.2. FORMATIONS / INFORMATIONS

Formation	Personnel formé	Date
Formation environnementale	Agents d'entretien	2018

Tableau 27 : liste des formations 2018

7.3. SUIVI DU SYSTEME DE MANAGEMENT ENVIRONNEMENTAL

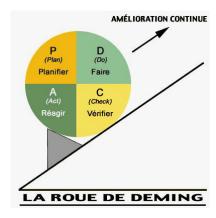
7.3.1. Son engagement environnemental

Depuis septembre 2010, le SYVADEC et la SARL LANFRANCHI TP sont partenaires pour promouvoir un nouveau modèle de pôle environnemental autour de l'activité de centre d'enfouissement.

Depuis Août 2011, le Système de Management Environnemental du site a été certifié conforme à l'ISO 14001 pour les activités de réception, stockage et enfouissement des déchets. La certification a été renouvelée pour 3 ans en juillet 2017 (cf. Annexe 4). L'audit annuel, réalisé le 06/07/18, n'a pas révélé de non-conformité.

7.3.2. Principe de la certification ISO 14001

La norme ISO 14001 trace un cadre qu'une entreprise doit appliquer pour mettre sur pied un système de management environnemental efficace.


Cette norme repose sur le principe d'amélioration continue de la performance environnementale par la maîtrise des impacts liés à l'activité de l'entreprise. Celle-ci prend un double engagement de respect de la conformité réglementaire et de progrès continu.

Elle permet de bien structurer la démarche de mise en place d'un système de management environnemental, d'en assurer la traçabilité et d'y apporter la crédibilité découlant de la certification par un organisme extérieur accrédité.

La roue de Deming est le principe de base sur lequel reposent toutes les exigences de la norme ISO 14001.

Le principe de la norme ISO 14001 se divise en quatre parties :

- Planifier,
- Faire,
- Vérifier et contrôler,
- Réagir et corriger.

Elle implique l'entreprise dans un engagement de réduction des nuisances, d'amélioration continue et fournit en annexe un quide pour son application. Elle introduit des exigences de communication interne et externe aux parties intéressées, de prévention des situations d'urgence et de capacité à réagir face à celles-ci.

Des objectifs quantifiés et adaptés à LANFRANCHI TP sont revus chaque année afin de progresser dans le respect de l'environnement, en particulier pour ce qui concerne la prévention des risques de pollution.

7.3.3. Maîtrise des écarts

L'enregistrement systématique des problèmes rencontrés sur le site (non conformités, évènements ou réclamations) au travers de fiches d'écart permet de s'améliorer et de diminuer ainsi les impacts de l'ISDND sur l'environnement.

7.3.4. Performances environnementales

Les objectifs suivis et les résultats pour l'année 2018 sont synthétisés dans le tableau suivant :

Indicateurs	2011	2012	2013	2014	2015	2016	2017	2018	Objectifs	Résultats
Plainte des riverains	1	0	0	0	0	0	0	1	<3 Par an	
Taux de compactage des déchets	1,1T/M ³	1,1T/M ³	1,1T/M ³	1,3T/M ³	0,981 T/M ³	1,06 T/M ³	1,03 T/M ²	1,04 T/M ³	Taux sup ou égal à 1T/m ³ sur la durée de vie du site	
Refus de déchets	1	0	1	2	2	2	0	0	<3 par an	
Conso GNR par tonnes enfouies	4,3 L/T	3,7 L/T	3 L/T	1,6 L/T	1,13 L/T	1,03 L/T	1,01 L/T	0,93 L/T	Maintien ou diminution de la conso en GNR par tonnes enfouis (<1,5)	
Bassin de stockage des lixiviats	/	/	/	/	2,17m	2,6m	2,7m	4,1m	Hauteur moyenne sur 1'année ≤ 3,1m	
Bassin de stockage des eaux pluviales	/	/	1	/	1.46m	1,54m	1,4m	1,3m	Hauteur moyenne sur 1'année ≤ 1,4m	
Réalisation des analyses	75%	100%	100%	100%	95%	100%	100%	94%	Réalisation de 100% des analyses réglementaires	
Formation personnel	/	/	/	/	/	100%	100%	100%	100% de la réalisation des formations planifiées	
Résultats des paramètres analysés	/	97%	97.5%	99%	99%	95%	98%	100%	100% des analyses conformes	
Conformité réglementaire	/	97%	97.5%	99%	99%	97%	97%	98%	100% conformité	
Test des consignes	100%	100%	100%	80%	10%	90%	90%	75%	100% de consignes testées prévu au programme environnemental	
Température moyenne annuelle brûlage torchère	/	/	/	/	1	951°C	948°C	950°C	Moyenne annuelle > 900°C	
Osmoseur	/	1	/	/	53%	50%	44,5%	43,0%	Taux de conversion moyen ≥ 53%	

7.4. GESTION DES NUISANCES OLFACTIVES

Tous les jours, le responsable du CET suit l'évolution du panache d'odeur grâce au système ODOTECH.

La simulation du déplacement du panache lui permet d'anticiper sur des nuisances olfactives aux abords des villes par des recouvrements de terre et l'arrêt de la réinjection de lixiviat.

Observation : un signalement a été enregistré en 2018 (cf. § 7.1 incidents)

7.5. Frequentation du site par les oiseaux

La société LANFRANCHI utilise une méthode de dénombrement des oiseaux sur la base de photographies, et de grilles permettant de déterminer le nombre approximatif et les espèces d'oiseaux. Ce dénombrement est réalisé dans le courant du premier trimestre de l'année.

Le dénombrement est le suivant :

Goéland leucophée : environ 720 individus (▼)

• - Grand corbeau : environ 15 individus (🗷)

Milan royal: environ 10 individus (↗)

• - Corneille mantelée : environ 15 individus (=)

Nous pouvons noter une augmentation de 66 individus entre 2018 et 2017 soit une augmentation de l'ordre de 10% (après une baisse de 5% de la population l'année précédente).

	03-févr-14	20-janv-15	18-janv-16	06-mars-17	31-mars-18
Goéland leucophée	680	680	688	660	720
Grand corbeau	11	11	14	10	15
Milan royal	7	7	9	9	10
Corneille mantelée	21	21	23	15	15
population totale dénombrée	719	719	734	694	760

Résultat des comptages par la société Lanfranchi TP depuis 2014

Des opérations complémentaires de comptage ont été réalisées à la demande de la DREAL en août et en octobre 2018 par le bureau d'étude environnemental Endemys. Les résultats de ces comptages sont donnés dans le tableau cidessous.

	07-août-18	23-oct-18
Goéland leucophée	550	1500
Grand corbeau	5	3
Milan royal	7	30
Corneille mantelée	70	20
Moineau cisalpin	8	
Fauvettes à tête noire	4	
Etourneau unicolore	2	75
Tourterelle des bois	1	
Bergeronette grise		10
Bergeronette des ruisseaux		1
Mouette rieuse		7
population totale dénombrée	647	1628

On peut noter une baisse de 14% entre mars et aout 2018 puis un accroissement 150 % entre Août et octobre 2018. Cependant, ces comptages ne peuvent être comparés directement à des données antérieurs (période de comptage différente / groupes d'oiseaux complétés) et ne peuvent donc pas être directement interprétées.

8. Bilan des travaux de l'année 2018 et perspectives pour l'année 2019

8.1. BILAN 2018

- Casier
 - Modification de la piste périphérique déplacement réseau de collecte des eaux pluviales et de la clôture périphérique- Août à octobre 2018

Compactage de la nouvelle piste périphérique

Pose des étanchéités côté casier des déchets déplacés - juillet 2018.

Etanchéité – côté casier des déchets déplacés

Pose des étanchéités côté sud - novembre 2018.

Etanchéité – côté sud du casier

Gestion du biogaz

o Installation d'un débitmètre pour mesurer le débit de biogaz en amont de la torchère-évaporateur et de la torchère de secours - septembre 2018

Débitmètre - canalisation de captage principale

Pont bascule

o Travaux de sécurisation du pont bascule - béton de propreté et réseau de récupération des eaux pluviales-juillet 2018

Béton de propreté sous pont bascule

Pose du pont

8.2. PROJETS 2019

- Gestion des lixiviats
 - o Etude pour la mise en œuvre d'un procédé de traitement complémentaire
- Gestion du Biogaz
 - o Prolongement du réseau biogaz provisoire et définitif suivant avancement de l'exploitation
- Couverture finale
 - O Pose de la couverture finale sur les zones arrivées à la côte finale d'exploitation suivant avancement de l'exploitation.

Liste des graphiques, illustrations et tableaux

Graphique 1 : Evolution du tonnage de déchets enfouis sur la période 2010-2018	7
Graphique 2 : Evolution de la conductivité des piézomètres et du forage	23
Graphique 3 : Courbe de suivi de la charge hydrique en fond de casier	28
Graphique 4 : Courbe de suivi du niveau dans le bassin de collecte des lixiviats	29
Tableau 1 : Tonnage de déchets enfouis 2018 / 2017	6
Tableau 2 : Pluviométrie sur site comparaison 2018/2017	
Tableau 3 : Bilan brut 2018/2017	
Tableau 4 : Volume réel de lixiviat	
Tableau 5 : Plan de contrôle 2017 sur le bassin des eaux pluviales	
Tableau 6 : Bilan physico chimique semestriel	
Tableau 7 : comparatif des moyennes des analyses (2012-2018)	
Tableau 8 : Plan de contrôle 2018 sur la canalisation sous casier	
Tableau 9 : suivi de la canalisation sous casier	
Tableau 10 : comparatif des moyennes d'analyses – canalisation sous casier 2014-2018	
Tableau 11 : Plan de contrôle 2018 sur les eaux souterraines	
Tableau 12 : Analyses du piézomètre 1	15
Tableau 13 : Analyses du piézomètre 2	16
Tableau 14 : Analyses du piézomètre 3	17
Tableau 15 : Analyses forage	18
Tableau 16 : Analyses effectuées sur le Ruisseau du Vetricelli (amont et aval du rejet des perméats)	24
Tableau 17 : Plan de contrôle 2018 sur le Ruisseau du Rizzanese	25
Tableau 18 : Analyses effectuées sur le Ruisseau du Rizzanese (amont et aval de la confluence du Vetricelli)	25
Tableau 19 : Indice IBGN	26

Tableau 20 : Plan de controle 2018 sur le bassin de lixiviats	27
Tableau 21 : Analyses du bassin lixiviat	27
Tableau 22 : traitement des lixiviats 2018	29
Tableau 23 : Plan de contrôle 2018 sur le perméat	30
Tableau 24 : Résultats d'analyses campagne de traitement 2018	30
Tableau 25 : Résultat du contrôle de fumée torchère -2018	33
Tableau 26 : liste des incidents répertoriés en 2018	36
Tableau 27 : liste des formations 2018	


Annexes

Annexe 1.	plan de situation	. 47
Annexe 2.	Rapports d'analyse – Eaux pluviales	. 48
Annexe 3.	Rapport d'analyse - Canalisation sous casier	. 49
Annexe 4.	Rapports d'analyses - Eaux souterraines	. 50
Annexe 5.	Rapports d'analyses - Ruisseau du Vetricelli	. 51
Annexe 6.	Rapports d'analyses - Ruisseau du Rizzanese	. 52
Annexe 7.	Rapports IBGN – Rizzanese	. 53
Annexe 8.	Rapport d'analyses – Lixiviats	. 54
Annexe 9.	Rapports d'analyses – Perméats	. 55
Annexe 10.	Rapports réglementaires d'analyse des fumées de torchère	. 56
Annexe 11.	Plans topographique – février 2018	. 57

9. Annexes

Annexe 1. plan de situation

Annexe 2. Rapports d'analyse – Eaux pluviales

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec

bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

Dossier N° : 18M011149 Date de réception : 01/03/2018

Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech Matrice Référence échantillon Observations

002 Eau de rejet / Eau résiduaire EAUX PLUVIALES (1203) (voir note ci-dessous)

(179) (voir note ci-dessous)

Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX : échantillons congelés.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18	M011149-002	Version AR-18-IX-036412-01(14/03/2018) Votre réf.	EAUX PLUVIA	LES			Page 2/4
Date de pré	élèvement	27/02/2018 08:20	Prélèvement ef	fectué par	IRH AIX (CLIE	NT) - IRH13	
Date de réd	ception	01/03/2018 06:37	Température de	l'air de	7.3°C		
Début d'an	alvse	01/03/2018	l'enceinte				
Prépar	-						
Пераг	ations			Résultat	Unité		Incertitude
IX488 : Mi	inéralisation Pr	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC	C 1-0685 *				
		5587-1 ou NF EN ISO 15587-2					
Param	ètres nhysic	ochimiques généraux					
1 didiii	cues priyate	ocininiques generaux		Résultat	Unité		Incertitude
IX579 : Co	onductivité à 2	5°C Prestation réalisée par nos soins					
		nde] - NF EN 27888					
Conductiv	vité à 25°C		#	664	μS/cm		±66
	ure de mesure de	la conductivité		19.9	°C		±1.99
		n réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-068	R5 *	0.3	mg/l		±0.12
		ductimétrie - NF EN ISO 10304-1		0.0	g.i		
IX590 : M	esure du pH Pr	estation réalisée par nos soins			_		
	trie - NF EN ISO 10						
pH			#	8.6	Unités pH		±0.86
	ure de mesure du	nH	#	19.9	°C		±1.99
		C Prestation réalisée par nos soins		1510	ohm.cm		
	F EN 27888	o i restation realisee par nos sons		1010	oiiii.dii		
Divers	micropollusi	nts organiques					
Divers	micropolidai	its organiques		Résultat	Unité		Incertitude
IXH8C : O	rgano Halogéi	nés Adsorbables (AOX) Prestation réalisée par nos soins N	FEN *	120	µg/l		±54
ISO/IEC 1702	25:2005 COFRAC 1-						
		asion - Hi EN 150 5562					
Fer et	Manganèse			Résultat	Unité		Incertitude
IVOON - F	(5-) -						
	NF EN ISO 11885	réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	-	4.2	mg/l		±1.26
				0.42			±0.063
1-0685		Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COF	RAC -	0.42	mg/l		±0.063
ICP/AES -	NF EN ISO 11885						
Oligo-é	éléments - M	icropolluants minéraux					
				Résultat	Unité		Incertitude
		Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR	AC 1-0685 *	4.1	mg/l		±0.41
	NF EN ISO 11885						
		tation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1	1-0685 *	<0.01	mg/l		
	NF EN ISO 11885						
	admium (Cd) F NF EN ISO 11885	restation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA	C 1-0685 *	<0.002	mg/l		
	hrome (Cr) Pres NF EN ISO 11885	station réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1	1-0685 *	<0.005	mg/l		
			#				10.244
		ion réalisée par nos soins ie automatisée] - Méthode interne selon NF T 90-043	#	0.02	mg/l		±0.011
			2005 *	45.005			
	NF EN ISO 11885	tion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-	0080	<0.005	mg/l		

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N* ech 18M011149-002 Version AR-18-IX-036412-01(14/03/2018) Votre réf. EAUX PLUVIALES						
Oligo-éléments - Micropolluants minéraux						
		Résultat	Unité		Incertitude	
IX027 : Cyanures aisément libérables Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Flux continu - NF EN ISO 14403	*	<0.01	mg/l			
IX03L: Etain (Sn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	<0.005	mg/l			
IXHG0 : Mercure (Hg) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 SFA / vapeurs froides (CV-AAS) [Minéralisation à chaud et dosage par AFS] - NF EN ISO 17852	*	<0.5	µg/l			
IX03I : Nickel (Ni) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	<0.01	mg/l			
IX03W: Plomb (Pb) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	<0.01	mg/l			
IX03V : Zinc (Zn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	0.03	mg/l		±0.012	
Oxygènes et matières organiques		Résultat	Unité		Incertitude	
IX467 : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Combustion (Détection IR) - NF EN 1484	*	17.3	mg/l		±7.79	
IX463 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins Electrochimie - NF EN 1899-1	#	9	mg/l		±5	
IXO10 : Matières en suspension (MES) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 Filtration [Filtre WHATMAN 934-AH RTU /47] - NF EN 872	*	79	mg/l		±20	
IX18L : Demande chimique en oxygène (ST-DCO) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Méthode à petite échelle en tube fermé - ISO 15705	*	95	mg O2/I		±48	
Paramètres azotés et phosphorés		Résultat	Unité		Incertitude	
IXS9E : Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins Calcul-	#	6.00	mg N/I			
IX473 : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA(1-0885 Titrimétrie [Minéralisation, Distillation] - NF EN 25663	*	4.9	mg N/I		±2.45	
IX01Q : Azote Nitrique / Nitrates (NO3) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395						
Azote nitrique	#	0.87	mg N-NO3/I		±0.392	
Nitrates	#	3.9	mg NO3/I		±1.75	
IX02X: Azote Nitreux / Nitrites (NO2) Prestation réalisée par nos soins Flux continu - NFEN ISO 13395						
Azote nitreux	#	0.23	mg N-NO2/I		±0.115	
Nitrites	#	0.76	mg NO2/I		±0.380	
IX76J: Phosphore (P) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	0.21	mg P/I			
Dérivés phénoliques		Résultat	Unité		Incertitude	
IX480 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Flux continu - NF EN ISO 14402	*	<0.01	mg/l			

Eurofins Hydrologie Est SAS tél. +33 3 83 50 36 00 Rue Lucien Cuenot Site Saint-Jacques II fax +33 8 20 20 90 32 F-54521 Maxeville cedex

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M011149-002 Version AR-18-IX-036412-01(14/03/2018) Votre réf. EAU	Page 4/4			
Hydrocarbures		Résultat	Unité	Incertitude
IXY6I : Indice hydrocarbures volatils (C5-C11) Prestation réalisée par nos soins NF EN ISONEC 17025-2005 COFRAC 1-0885 HS - GC/FID - XP T 90-124	*	<25	μgЛ	
IX578: Indice Hydrocarbures (C10-C40) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 GC/FID [Extraction Liquide / Liquide] - NF EN ISO 9377-2	*	<0.1	mg/l	

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 4 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponibles sur demande.

disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 nn

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Page 1/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

IRH INGENIEUR CONSEIL **Monsieur Pierre BOYER** bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001

Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

Coordinateur de projet client : Clémence Brochard / ClemenceBrochard@eurofins.com / +33 3 88 02 15 89

N° Ech	Matrice		Référence échantillon
001	Eau chargée/Résiduaire	(EC)	Bassin Lixivat
002	Eau chargée/Résiduaire	(EC)	Eaux pluviales
003	Eau chargée/Résiduaire	(EC)	Drains
004	Eau chargée/Résiduaire	(EC)	Pz1 (9m) à gauche par rapport au portail
005	Eau chargée/Résiduaire	(EC)	Pz2 (12m) à droite par rapport au portail
006	Eau chargée/Résiduaire	(EC)	Pz3 (12m)
007	Eau chargée/Résiduaire	(EC)	Forage
800	Eau chargée/Résiduaire	(EC)	Aval rejet Ruisseau Rizzanese
009	Eau chargée/Résiduaire	(EC)	Amont rejet ruisseau Rizzanese
010	Eau chargée/Résiduaire	(EC)	Perméat osmoseur

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 2/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 Date de réception : 19/07/2018

N° de rapport d'analyse : AR-18-LK-123004-01 Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT

Commune : Propiano 1

N° Echantillon Référence client :	001 Bassin Lixivat	002 Eaux pluviales	003 Drains	004 Pz1 (9m) à gauche par rapport au portail	005 Pz2 (12m) à droite par rapport au portail	006 Pz3 (12m)
Matrice :	EC	EC	EC	EC	EC	EC
Date de prélèvement :	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Date de début d'analyse :	20/07/2018	20/07/2018	20/07/2018	19/07/2018	19/07/2018	19/07/2018
Température de l'air de l'enceinte :	13.4°C	13.4°C	13.4°C	13.4°C	13.4°C	13.4°C

Analyses immédiates								
LS009 : Mesure du pH								
pH		# 8.6 ±0.43	# 8.8 ±0.44	# 8.0 ±0.40	# 6.3 ±0.32	# 6.8 ±0.34	# 6.4 ±0.32	
Température de mesure du pH	°C	21.3	20.9	21.3	21.2	21.4	21.4	
LS579 : Conductivité à 25°C								
Conductivité corrigée automatiquement à 25°C	μS/cm	# 35100	# 1270	# 2970	# 1500	# 3740	# 1040	
Température de mesure de la conductivité	°C	21.2	20.8	21.1	21.0	21.3	21.3	
LS424 : Résistivité	ohm.cm	28.5	787	337	668	267	962	
LS486 : Potentiel d'oxydoréduction	mV				308	321	320	
LS010 : Matières en Suspension (MES) par filtration	mg/l	# 850 ±170	# 29 ±6	# 42 ±8	# 3.0 ±0.60	# 5.3 ±1.06	# 3.9 ±0.78	
Indices de pollution								

LS046 : Organo Halogénés Adsorbables (AOX)	mg Cl/l			Г	# 0.27 ±0.041		# 0.33 ±0.050	Г	# 0.1 ±0.02		# 0.06 ±0.009	Г	# 0.05 ±0.008
LS02M : Azote Nitrique / Nitrates (NO3)												
Nitrates	mg NO3/I		# 2.52 ±0.633		# 2.33 ±0.586		# 12.8 ±3.20		# 11.7 ±2.93		# 67.2 ±16.80		# 4.13 ±1.034
Azote nitrique	mg N-NO3/I		# 0.57 ±0.156		# 0.53 ±0.146		# 2.89 ±0.725		# 2.65 ±0.665		# 15.2 ±3.80		# 0.93 ±0.241
LS02X: Azote Nitreux / Nitrites (NO2)													
Nitrites	mg NO2/I		# 0.28 ±0.070		# 1.01 ±0.253		# 3.81 ±0.953		# 0.17 ±0.043		# 0.11 ±0.028		#<0.04
Azote nitreux	mg N-NO2/I		# 0.09 ±0.023		# 0.31 ±0.078		# 1.16 ±0.290		# 0.05 ±0.013		# 0.03 ±0.008		#<0.01
LS02J : Chlorures	mg/l	*	8240 ±1648					*	195 ±39	*	676 ±135	*	224 ±45
LS02U : Chrome VI	mg/l				# <0.01		#<0.02						
LS03A : Sulfates (SO4)	mg SO4/I							*	204 ±51	*	495 ±124	*	47.9 ±11.97
LS03D : Orthophosphates (PO4)													
Orthophosphates (P)	mg P/I							*	<0.03	*	<0.03	*	< 0.03
Orthophosphate (PO4)	mg PO4/I							*	<0.10	*	<0.10	*	<0.10
LS461 : Demande chimique en	mg O2/I							*	<30	*	83 ±12	*	<30
Oxygène (DCO)													
LS18L : Demande Chimique en	mg/l	*	13000 ±650	*	200 ±10	*	300 ±15						
Oxygène (ST-DCO)													
LS463 : Demande Biochimique en	mg O2/I	*	1860 ±651	*	16 ±6	*	9 ±3	*	<3.00	*	4 ±1	*	<3.00
Oxygène (DBO5)	mad.	*	E 0 . 0 E0		42 . 4	*	76.0		76.070	*	10 . 0		-E 0
LS467 : Carbone Organique Total (COT)	mg/l	•	5.8 ±0.58	ĺ	42 ±4		76 ±8	ĺ	7.6 ±0.76	•	19 ±2	1	<5.0
LS559 : Fluorures	ma/l			*	< 0.5	*	0.51 ±0.071						

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 3/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001

Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

N° Echantillon Référence client :	001 Bassin Lixivat	002 Eaux pluviales	003 Drains	004 Pz1 (9m) à gauche par rapport au portail	005 Pz2 (12m) à droite par rapport au portail	006 Pz3 (12m)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :	EC 17/07/2018 20/07/2018 13.4°C	EC 17/07/2018 20/07/2018 13.4°C	EC 17/07/2018 20/07/2018 13.4°C	EC 17/07/2018 19/07/2018 13.4°C	EC 17/07/2018 19/07/2018 13.4°C	EC 17/07/2018 19/07/2018 13.4°C
	Indice	s de pollut	ion			
LS007 : Azote Kjeldahl (NTK) mg N/l LS572 : Azote ammoniacal mg N/l Azote ammoniacal mg N/l	* 1920 ±384	* 11.6 ±2.32	* 67.8 ±13.56	* <3.00 * <0.5	* 3.00 ±0.600 * <0.5	* <3.00 * <0.5

Ammonium	mg NH4/I						*	<0.6	*	<0.6	*	<0.6
LS480 : Indice phénol	μg/l		*	<10.0	*	<20.0	*	<10.0	*	<10.0	*	<10.0
LS478 : Cyanures aisément libérables	μg/l		*	<10	*	<10						
		1	M	étaux								
LS488 : Minéralisation acide nitrique avant analyse métaux			*	Fait								
LS425 : Aluminium (AI)	mg/l		*	0.12 ±0.042	*	<0.10	*	<0.10	*	<0.10	*	0.10 ±0.035
LS428 : Arsenic (As)	mg/l		*	<0.01	*	<0.01						
LS433 : Cadmium (Cd)	mg/l						*	<0.01	*	<0.01	*	<0.01
LS434 : Calcium (Ca)	mg/l						*	68.3 ±11.61	*	197 ±33	*	37.0 ±6.29
LS435 : Chrome (Cr)	mg/l						*	<0.01	*	<0.01	*	<0.01
LS437 : Cuivre (Cu)	mg/l		*	<0.02	*	<0.02	*	< 0.02	*	<0.02	*	< 0.02
LS438 : Etain (Sn)	mg/l		*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05
LS439 : Fer (Fe)	mg/l		*	0.54 ±0.108	*	5.05 ±1.010	*	0.05 ±0.010	*	0.02 ±0.004	*	0.11 ±0.022
LS441 : Magnésium (Mg)	mg/l						*	78.0 ±8.58	*	147 ±16	*	32.7 ±3.60
LS442 : Manganèse (Mn)	mg/l		*	0.38 ±0.095	*	0.95 ±0.238	*	0.22 ±0.055	*	0.44 ±0.110	*	0.22 ±0.055
LS444 : Nickel (Ni)	mg/l		*	<0.01	*	0.01 ±0.002	*	<0.01	*	<0.01	*	<0.01
LK07G : Phosphore (P)	mg P/I		*	0.1 ±0.01	*	0.3 ±0.04	*	<0.1	*	<0.1	*	<0.1
LS446 : Plomb (Pb)	mg/l		*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01
LS447 : Potassium (K)	mg/l						*	3.79 ±0.531	*	44.2 ±6.19	*	2.68 ±0.375
LS459 : Zinc (Zn)	mg/l		*	<0.02	*	<0.02	*	<0.02	*	<0.02	*	<0.02
LS574 : Mercure (Hg)	μg/l		*	<0.5	*	<0.5	*	<0.5	*	<0.5	*	<0.5

Hydrocarbures totaux LSIHV : Indice Hydrocarbure Volatil <30 <30 μg/l (compris C5-C11) LS578 : Indice Hydrocarbures <0.50 <0.50 (C10-C40)

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saveme Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 4/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

Commune : Tropiano 1							
N° Echantillon		001	002	003	004	005	006
Référence client :		Bassin Lixivat	Eaux pluviales	Drains	Pz1 (9m) à gauche par rapport au portail	Pz2 (12m) à droite par rapport au portail	Pz3 (12m)
Matrice :		EC	EC	EC	EC	EC	EC
Date de prélèvement :		17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Date de début d'analyse :		20/07/2018	20/07/2018	20/07/2018	19/07/2018	19/07/2018	19/07/2018
Température de l'air de l'enceinte :		13.4°C	13.4°C	13.4°C	13.4°C	13.4°C	13.4°C
Ну	/drocarb	ures Aroma	atiques Pol	ycycliques	(HAPs)		
LS8RK : Fluoranthène	μg/l				* <0.05	* <0.05	* <0.05
LS8RT : Naphtalène	µg/l				* <0.05	* <0.05	* <0.05
LS8RJ : Anthracène	μg/l				* <0.05	* <0.05	* <0.05
LS8RL : Pyrène	µg/l				* <0.05	* <0.05	* <0.05
LS8RP : Benzo(b)fluoranthène	µg/l				* <0.05	* <0.05	* <0.05
LS8RQ : Benzo(k)fluoranthène	μg/l				* <0.05	* <0.05	* <0.05
LS8RG : Benzo(a)pyrène	µg/l				* <0.05	* <0.05	* <0.05
LS8RW : Benzo(ghi)Pérylène	µg/l				* <0.05	* <0.05	* <0.05
LS8RR : Indeno (1,2,3-cd) Pyrène	µg/l				* <0.05	* <0.05	* <0.05
LS8RH : Fluorène	µg/l				* <0.05	* <0.05	* <0.05
LS8RI : Phénanthrène	µg/l				* <0.05	* <0.05	* <0.05
LS8RM : Benzo-(a)-anthracène	µg/l				* <0.05	* <0.05	* <0.05
LS8RN : Chrysène	μg/l				* <0.05	* <0.05	* <0.05
LS8RS : Dibenzo(a,h)anthracène	µg/l				* <0.05	* <0.05	* <0.05
LS8RU : Acénaphthylène	µg/l				* <0.05	* <0.05	* <0.05
LS8RV : Acénaphthylene	µg/l				* <0.05	* <0.05	* <0.05
LS8RF : Somme des HAP	µg/l				<0.8	<0.8	<0.03
		Polychloro	biphényles	(PCBs)			
LS596 : PCB congénères réglementair		,		` '			
composés)	00 (1						
PCB 28	μg/l				* <0.02	* <0.02	* <0.02
PCB 52	µg/l				* <0.02	* <0.02	* <0.02
PCB 101	μg/l				* <0.02	* <0.02	* <0.02
PCB 138	µg/l				* <0.02	* <0.02	* <0.02
PCB 153	μg/l				* <0.02	* <0.02	* <0.02
PCB 180	μg/l				* <0.02	* <0.02	* <0.02
PCB 118 SOMME PCB (7)	µg/l µg/l				* <0.02 <0.14	* <0.02 <0.14	* <0.02 <0.14
	F3-	Comp	osés Volat	ils			
LS1JW : Ethylbenzène	poll				* <1.00	* <1.00	* <1.00
LS1JW : Ethylbenzene LS1KA : Toluène	μg/l μg/l				* <1.00	* <1.00 *	* <1.00
LSTKA: TOTUENE	рул				<1.00	<1.00	<1.00

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 5/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

N° Echantillon Référence client :	001 Bassin Lixivat	002 Eaux pluviales	003 Drains	004 Pz1 (9m) à gauche par rapport au portail	005 Pz2 (12m) à droite par rapport au portail	006 Pz3 (12m)
Matrice :	EC	EC	EC	EC	EC	EC
Date de prélèvement :	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Date de début d'analyse :	20/07/2018	20/07/2018	20/07/2018	19/07/2018	19/07/2018	19/07/2018
Température de l'air de l'enceinte :	13 4°C	13 4°C	13 4°C	13 4°C	13 4°C	13 4°C

		Comp	osés Volat	tils						
LS1KE : m+p-Xylène	μg/l				*	<1.00	*	<1.00	*	<1.00
LS1KF : o-Xylène	μg/l				*	<1.00	*	<1.00	*	<1.00
LS1L1 : Benzène	μg/l				*	<0.50	*	<0.50	*	<0.50

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 6/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018

Date de réception : 19/07/2018

Dossier N°: 18E081135

N° de rapport d'analyse : AR-18-LK-123004-01

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT

Commune : Propiano 1

N° Echantillon 007 800 009 010 Référence client : Forage Aval rejet Amont rejet Perméat Ruisseau ruisseau osmoseur Rizzanese Rizzanese Matrice: EC EC EC EC Date de prélèvement : 17/07/2018 17/07/2018 17/07/2018 17/07/2018 Date de début d'analyse : 19/07/2018 20/07/2018 20/07/2018 19/07/2018 13.4°C Température de l'air de l'enceinte : 13.4°C 13.4°C 13.4°C

Analyses immédiates LS009: Mesure du pH # 6.7 ±0.34 # 7.2 ±0.36 # 7.4 ±0.37 pΗ 21.3 Température de mesure du pH 21.0 20.6 LS579: Conductivité à 25°C # 1650 #217 Conductivité corrigée automatiquement à uS/cm # 224 # 1590 Température de mesure de la conductivité °C 20.9 21.2 20.4 19.9 LS424 : Résistivité 608 4460 4610 631 ohm.cm 305 LS486: Potentiel d'oxydoréduction mV LS010 : Matières en Suspension mg/l # 2.4 ±0.48 # < 2.0 (MES) par filtration

(ML3) par initiation									
			Indice	s	de pollut	io	n		
LS046 : Organo Halogénés Adsorbables (AOX) LS02M : Azote Nitrique / Nitrates (NO3)	mg Cl/l		# 0.09 ±0.014					Γ	# 0.06 ±0.009
Nitrates	mg NO3/I		# 27.3 ±6.83		# 1.25 ±0.319		# 1.43 ±0.363		# <1.00
Azote nitrique	mg N-NO3/I		# 6.16 ±1.541		# 0.28 ±0.094		# 0.32 ±0.101		# < 0.22
LS02X : Azote Nitreux / Nitrites (NO2) Nitrites Azote nitreux	mg NO2/I mg N-NO2/I		# <0.04 # <0.01		# <0.04 # <0.01		# <0.04 # <0.01		# 0.38 ±0.095 # 0.12 ±0.030
LS02J : Chlorures	mg/l	*	239 ±48	*	29.7 ±5.94	*	29.4 ±5.88		
LS03A : Sulfates (SO4) LS03D : Orthophosphates (PO4)	mg SO4/I	*	244 ±61	*	8.21 ±2.053	*	14.2 ±3.55		
Orthophosphates (P)	mg P/I	*	<0.03						
Orthophosphate (PO4)	mg PO4/I	*	<0.10						
LS461 : Demande chimique en Oxygène (DCO)	mg O2/I	*	<30	*	<30	*	<30	*	<30
LS463 : Demande Biochimique en Oxygène (DBO5)	mg O2/I	*	<3.00	*	<3.00	*	<3.00	*	<3.00
LS467 : Carbone Organique Total (COT)	mg/l	*	7.1 ±0.71	*	2.1 ±0.21	*	2.3 ±0.23		
LS559 : Fluorures	mg/l			*	<0.5	*	<0.5	*	<0.5
LS007 : Azote Kjeldahl (NTK) LS572 : Azote ammoniacal	mg N/I	*	<3.00	*	<3.00	*	<3.00	*	<3.00
Azote ammoniacal	mg N/I	*	0.7 ±0.04						
Ammonium	mg NH4/I	*	0.9 ±0.05						

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 7/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001

Nom client : SARL LANFRANCH ENVIRONNEMENT

Commune : Propiano 1										
N° Echantillon			007		008		009		010	
Référence client :			Forage		Aval rejet Ruisseau		Amont rejet ruisseau		Perméat osmoseur	
Matrice : Date de prélèvement :			EC 17/07/2018		Rizzanese EC 17/07/2018		Rizzanese EC 17/07/2018		EC 17/07/2018	
Date de début d'analyse :			19/07/2018		20/07/2018		20/07/2018		19/07/2018	
Température de l'air de l'enceinte :			13.4°C		13.4°C		13.4°C		13.4°C	
			Indice	S	de pollut	tic	on	h		
Large Indianahánal			<10.0	Ţ	<10.0		<10.0	ı	<10.0	
LS480 : Indice phénol	µg/l	•	<10.0	Ĺ	<10.0 <10		<10.0	Ĺ	<10.0	
LS478 : Cyanures aisément libérables	µg/l				<10		<10		<10	
LS479 : Cyanures totaux	μg/l			*	<10	*	<10			
				M	étaux	i		ì		
LS488 : Minéralisation acide		*	Fait	*	Fait	*	Fait	*	Fait	
nitrique avant analyse métaux			r circ		T Care		· circ		·	
LS425 : Aluminium (AI)	mg/l	*	<0.10					*	<0.10	
LS428 : Arsenic (As)	mg/l							*	<0.01	
LS433 : Cadmium (Cd)	mg/l	*	<0.01					*	<0.01	
LS434 : Calcium (Ca)	mg/l	*	82.9 ±14.09							
LS435 : Chrome (Cr)	mg/l	*	0.02 ±0.005					*	<0.01	
LS437 : Cuivre (Cu)	mg/l	*	<0.02					*	<0.02	
LS438 : Etain (Sn)	mg/l	*	<0.05					*	<0.05	
LS439 : Fer (Fe)	mg/l	*	0.05 ±0.010	*	0.11 ±0.022	*	0.16 ±0.032	*	<0.02	
LS441 : Magnésium (Mg)	mg/l	*	65.3 ±7.18							
LS442 : Manganèse (Mn)	mg/l	*	0.29 ±0.073					*	<0.01	
LS444 : Nickel (Ni)	mg/l	*	<0.01					*	<0.01	
LK07G : Phosphore (P)	mg P/I	*	<0.1	*	<0.1	*	<0.1	*	<0.1	
LS446 : Plomb (Pb)	mg/l	*	<0.01					*	<0.01	
LS447 : Potassium (K)	mg/l	*	3.51 ±0.491					ĺ.		
LS459 : Zinc (Zn)	mg/l	*	0.02 ±0.004					*	<0.02	
LS574 : Mercure (Hg)	µg/l	*	<0.5	L				*	<0.5	
			Hydroc	ar	rbures to	ta	aux			
LSIHV : Indice Hydrocarbure Volatil	μg/l			Г		Ī		*	<30	
(compris C5-C11) LS578 : Indice Hydrocarbures (C10-C40)	mg/l							*	<0.50	
	drocarb	ur	es Aroma	ati	iques Po	ly	cycliques	s (HAPs)	
LS8RK : Fluoranthène	μg/l	*	<0.05	П		ĺ	•		•	
LS8RT : Naphtalène	µg/l	*	<0.05							
LS8RJ : Anthracène	µg/l	*	<0.05							
LOUIN . AIRLII GUEITE	P9"									

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 8/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 Date de réception : 19/07/2018 N° de rapport d'analyse : AR-18-LK-123004-01

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

N° Echantillon	007	008	009	010
Référence client :	Forage	Aval rejet Ruisseau Rizzanese	Amont rejet ruisseau Rizzanese	Perméat osmoseur
Matrice :	EC	EC	EC	EC
Date de prélèvement :	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Date de début d'analyse :	19/07/2018	20/07/2018	20/07/2018	19/07/2018
Température de l'air de l'enceinte :	13.4°C	13.4°C	13.4°C	13.4°C

•							
	Hydrocarb	ures A	roma	atiques Pol	ycycliques	(HAPs)	
LS8RL : Pyrène	μg/l	* <	0.05				
LS8RP : Benzo(b)fluoranthène	μg/l	* <	0.05				
LS8RQ : Benzo(k)fluoranthène	μg/l	* <	0.05				
LS8RG : Benzo(a)pyrène	μg/l	* <	0.05				
LS8RW : Benzo(ghi)Pérylène	μg/l	* <	0.05				
LS8RR : Indeno (1,2,3-cd) Pyrène	μg/l	* <	0.05				
LS8RH : Fluorène	μg/l	* <	0.05				
LS8RI : Phénanthrène	μg/l	* <	0.05				
LS8RM : Benzo-(a)-anthracène	μg/l	* <	0.05				
LS8RN : Chrysène	μg/l	* <	0.05				
LS8RS : Dibenzo(a,h)anthracène	μg/l	* <	0.05				
LS8RU : Acénaphthylène	μg/l	* <	0.05				
LS8RV : Acénaphtène	μg/l	* <	0.05				
LS8RF : Somme des HAP	µg/l	<	0.8				
	I	Polyc	hloro	biphényles	(PCBs)		

		. 01	ycillolol	pipilellyles	(1 65
LS596 : PCB congénères régle composés)	ementaires (7				
PCB 28	μg/l	*	<0.02		
PCB 52	μg/l	*	<0.02		
PCB 101	μg/l	*	<0.02		
PCB 138	μg/l	*	<0.02		
PCB 153	μg/l	*	<0.02		
PCB 180	μg/l	*	<0.02		
PCB 118	μg/l	*	<0.02		
SOMME PCB (7)	µg/l		<0.14		

			Comp	osés Volat	tils	
LS1JW : Ethylbenzène	µg/l	*	<1.00			
LS1KA: Toluène	μg/l	*	<1.00			
LS1KE: m+p-Xylène	μg/l	*	<1.00			
LS1KF : o-Xylène	μg/l	*	<1.00			
LS1L1 : Benzène	μg/l	*	<0.50			

D : détecté / ND : non détecté

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SA\/

Page 9/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 Date de réception : 19/07/2018 N° de rapport d'analyse : AR-18-LK-123004-01

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001

Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

Observations	N° Ech	Réf client
Flux continu : l'analyse a été réalisée sur l'échantillon filtré à 0.45 µm.	(003)	Drains
L'analyse de DBO5 a été réalisée sur une fraction d'échantillon congelée à réception.	(001) (002) (003) (004) (005) (006) (007) (008) (009) (010)	Bassin Lixivat / Eaux pluviales / Drains / Pz1 (9m) à gauche par rapport au portail / Pz2 (12m) à droite par rapport au portail / Pz3 (12m) / Forage / Aval rejet Ruisseau Rizzanese / Amont rejet ruisseau Rizzanese / Perméat osmoseur /
Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation. L'échantillon a néanmoins été conservé dans les meilleures conditions de stockage.	(001) (002) (003) (004) (005) (006) (007) (008) (009) (010)	Bassin Lixivat / Eaux pluviales / Drains / Pz1 (9m) à gauche par rapport au portail / Pz2 (12m) à droite par rapport au portail / Pz3 (12m) / Forage / Aval rejet Ruisseau Rizzanese / Amont rejet ruisseau Rizzanese / Perméat osmoseur /
Spectrophotométrie visible : l'analyse a été réalisée sur l'échantillon filtré à 0.45µm.	(001) (002) (003) (004) (005) (006) (007) (008) (009) (010)	Bassin Lixivat / Eaux pluviales / Drains / Pz1 (9m) à gauche par rapport au portail / Pz2 (12m) à droite par rapport au portail / Pz3 (12m) / Forage / Aval rejet Ruisseau Rizzanese / Amont rejet ruisseau Rizzanese / Perméat osmoseur /

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 14 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des prélèvements et des analyses terrains et/ou des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 10/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018

Date de réception : 19/07/2018

Dossier N°: 18E081135

N° de rapport d'analyse : AR-18-LK-123004-01 Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

Clémence Brochard Coordinateur Projets Clients

Annexe 3. Rapport d'analyse - Canalisation sous casier

Rapport d'analyse de juillet dans annexe 2 – rapport complet comprenant les analyses du bassin eaux pluviales, bassin lixiviat, drain sous casier, ouvrages souterrains, aval et amont Rizzanese et perméat osmoseur

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

22 Rue François PIETRI - BP 60969 20090 AJACCIO | (04.95.29.14.80

(Fax) (eax)

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180125-432

Echantillon n°:20180125-02420

Produit: Eau résiduaire, pluviale, lixiviat.

Client: 25/01/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

06 Février 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 25/01/2018 Nature échantillon

Date de prélèvement 25/01/2018 Heure de réception 12:50

Heure de prélèvement 11:15 Motif de la visite autosurveillance

Prélevé par Le Laboratoire (TRI) N° de prélèvement/Lieu N°8426

Localisation exacte drain sous casier Analyse de type CDT PH RST sur place

Viggianello Point de Prelev./Station Autre 20180130

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place. pH mesuré sur place à T° de l'eau Conductivité mesurée sur place à 25°C Résistivité surplace	8.2 2340 427	Unité pH µS/cm ohm.cm		NFENISO10523 NFEN27888 CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

Directeur

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-036413-01 Version du : 14/03/2018 Page 1/4

Date de réception : 01/03/2018 Dossier N°: 18M011149

Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech	Matrice	Référence échantillon	Observations
003	Eau de rejet / Eau résiduaire	DRAINS	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre demière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par # et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX : échantillons congelés.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

fax +33 8 20 20 90 32

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ch 18M011149-003	Version AR-18-IX-036413-01(14/03/2018) 27/02/2018 08:40			Page 2/4 NT) - IRH13		
ate de preievement ate de réception	01/03/2018 06:37	Température d		IRH AIX (CLIENT) - IRH13 7.3°C		
•		l'enceinte		1.5 0		
ébut d'analyse	01/03/2018					
Préparations			Résultat	Unité		Ince
	restation réalisée par nos soins NF EN ISO/IEC 17025:200 15587-1 ou NF EN ISO 15587-2	5 COFRAC 1-0685 *				
Paramètres physic	cochimiques généraux		Résultat	Unité		Ince
570 : Conductivité à	25°C Prestation réalisée par nos soins		Nesultat	Office		
Potentiométrie [Méthode à la s	•					
Conductivité à 25°C		#	1810	µS/cm		
Température de mesure d	e la conductivité		19.9	°C		1
	ion réalisée par nos soins NF EN ISO/IEC 17025:2005 COF nductimétrie - NF EN ISO 10304-1	RAC 1-0685 *	0.7	mg/l		±
590 : Mesure du pH P	restation réalisée par nos soins					
oH		#	8.1	Unités pH		
Température de mesure d	u pH		19.9	°C		
424 : Résistivité à 25	°C Prestation réalisée par nos soins		551	ohm.cm		
Calcul - NF EN 27888						
Divers micropollua	ints organiques		Résultat	Unité		Inc
H8C: Organo Halogé O/IEC 17025:2005 COFRAC 1 Coulométrie [Adsorption, Com	enés Adsorbables (AOX) Prestation réalisée par n -0685 bustion] - NF EN ISO 9562	os soins NF EN *	180	µg/l		
Fer et Manganèse						
			Résultat	Unité		Ince
.02N : Fer (Fe) Prestation ICP/AES - NF EN ISO 11885	réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR/	AC 1-0685 *	13	mg/l		
	1) Prestation réalisée par nos soins NF EN ISO/IEC 17025:	2005 COFRAC *	2.6	mg/l		
0685 ICP/AES - NF EN ISO 11885						
Oligo-éléments - N	licropolluants minéraux		Résultat	Unité		inc
DDII : Aluminium /Al	A Development of the formation and the property of the propert	005 005D40 4 0005 \$	11	mg/l		
CP/AES - NF EN ISO 11885	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2	005 COFRAC 1-0085	"	mg/i		
03E : Arsenic (As) Pre	station réalisée par nos soins NF EN ISO/IEC 17025:2005 (COFRAC 1-0685 *	<0.01	mg/l		
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:201	05 COFRAC 1-0685 *	<0.002	mg/l		_
CP/AES - NF EN ISO 11885						
02Q : Chrome (Cr) Pre CP/AES - NF EN ISO 11885	estation réalisée par nos soins NF EN ISO/IEC 17025:2005	COFRAC 1-0685 *	0.013	mg/l		±(
02U : Chrome VI Prest	ation réalisée par nos soins	#	0.01	mg/l		±
	tria automaticaal - Mathoda interna calon NE 7 90 042					
Spectrophotométrie [Colorimé	trie automatisée] - Méthode interne selon NF T 90-043 tation réalisée par nos soins NF EN ISO/IEC 17025:2005 CI	OFDAC 4 DODE *	0.007	mg/l		±(

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ech 18M011149-003 Version AR-18-IX-036413-01(14/03/2018) Votre réf. DRAINS	3			Page 3/4
Oligo-éléments - Micropolluants minéraux		Résultat	Unité	Incerti
IXO27 : Cyanures aisément libérables Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 Flux continu - NF EN ISO 14403	*	<0.01	mg/l	
IX03L : Etain (Sn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	<0.005	mg/l	
XHG0 : Mercure (Hg) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 SFA / vapeurs froides (CV-AAS) [Minéralisation à chaud et dosage par AFS] - NF EN ISO 17852	*	<0.5	µд/I	
XO31 : NiCkel (Ni) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	<0.01	mg/l	
X03W: Plomb (Pb) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/AES - NF EN ISO 11885	*	0.01	mg/l	±0.
X03V: Zinc (Zn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	0.07	mg/l	±0.
Oxygènes et matières organiques		Résultat	Unité	Incer
VAST - Carbana Organique Total (COT) positive della constantia				
X467 : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 7025-2005 COFRAC 1-0885 Combustion [Détection IR] - NF EN 1484		45.4	mg/l	±20
X463 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins Electrochimie - NF EN 1899-1	#	5	mg/l	:
(010 : Matières en suspension (MES) Prestation réalisée par nos soins NF EN ISO/IEC 7025-2005 COFRAC 1-0885 Filtration (Filtre WHATMAN 934-AH RTU /47) - NF EN 872	*	170	mg/l	±
X18L: Demande chimique en oxygène (ST-DCO) Prestation réalisée par nos soins NF EN SOIIEC 17025:2005 COFRAC 1-0885 Méthode à petite échelle en tube fermé - ISO 15705	*	174	mg O2/I	±
Paramètres azotés et phosphorés		Résultat	Unité	Incert
XS9E: Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins Calcul -	#	33.7	mg N/I	
X473 : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC -0085 Titrimétrie [Minéralisation, Distillation] - NF EN 25663	*	22.8	mg N/I	±11
X01Q: Azote Nitrique / Nitrates (NO3) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395				
Azote nitrique	#	8.10	mg N-NO3/I	±3.
Nitrates	#	36	mg NO3/I	±
XO2X: Azote Nitreux / Nitrites (NO2) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395				
Azote nitreux	#	2.81	mg N-NO2/I	±1.
Nitrites	#	9.2	mg NO2/I	±4
X76J: Phosphore (P) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	0.22	mg P/I	
Dérivés phénoliques		Résultat	Unité	Incer
X480 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 Flux continu - NF EN ISO 14402	*	<0.01	mg/l	

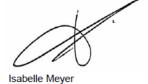
 Eurofins Hydrologie Est SAS
 tél. +33 3 83 50 36 00

 Rue Lucien Cuenot Site Saint-Jacques II
 fax +33 8 20 20 90 32

 F-54521 Maxeville cedex

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B



18M011149-003 | Version AR-18-IX-036413-01(14/03/2018) | Votre réf. DRAINS

Page 4/4

Hydrocarbures		Résultat	Unité	Incertitu
IXY6I : Indice hydrocarbures volatils (C5-C11) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 HS - GC/FID - XP T 90-124	*	<25	µ g/I	
IX578 : Indice Hydrocarbures (C10-C40) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 GC/FID [Extraction Liquide / Liquide] - NF EN ISO 9377-2	*	<0.1	mg/l	

Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 4 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponibles sur demande.

disponible sur demande. Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (eax)

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180328-1521

Echantillon n°:20180328-08334

Produit: Eau résiduaire, pluviale, lixiviat.

Client: 28/03/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO 20110

06 Avril 2018

Date de réception 28/03/2018 Nature échantillon

Date de prélèvement 28/03/2018 Heure de réception 12:10

Heure de prélèvement 10:55 Motif de la visite autosurveillance

Prélevé par Le Laboratoire (TRI) N° de prélèvement/Lieu N°50095

Localisation exacte drain sous casier Analyse de type CDT PH RST sur place

Viggianello Point de Prelev./Station Autre 20180404

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place. pH mesuré sur place à T° de l'eau Conductivité mesurée sur place à 25°C Résistivité surplace	8.2 2600 385	Unité pH µS/cm ohm.cm		NFENISO10523 NFEN27888 CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

Directeur

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

Dossier N° : 18M024186 Date de réception : 27/04/2018

Référence bon de commande : AFFAIRE CORP180001 - LANFRANCHI

N° Ech	Matrice	Référence échantillon	Observations
004	Eau de rejet / Eau résiduaire	DRAINS	(1203) (voir note ci-dessous)
			(2232) (voir note ci-dessous) (2248) (voir note ci-dessous)

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par # et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(2232) Température à réception non conforme

(2248) Arrivée hors délai

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ech 18M024186-0	04 Version AR-18-IX-061737-01(28/04/	2018) Votre réf. DRAINS				Page 2/2
Date de prélèvement	24/04/2018 08:50	Prélèvement e	effectué par	IRH AIX (CLIE	ENT) - IRH13	
Date de réception	27/04/2018 06:38	Lieu prélèvem	ent	PRORPIANO		
Début d'analyse	27/04/2018	Température d l'enceinte	le l'air de	15.4°C		
Paramètres phys	sicochimiques généraux					
			Résultat	Unité		Incertit.
IX579 : Conductivité	à 25°C Prestation réalisée par nos soins					
Potentiométrie [Méthode à	la sonde] - NF EN 27888					
Conductivité à 25°C		#	2480	μS/cm		±24
Température de mesure	e de la conductivité		20.3	°C		±2.0
IX590 : Mesure du pl	Prestation réalisée par nos soins					
Potentiométrie - NF EN IS	O 10523					
pH		#	8.1	Unités pH		±0.8
Température de mesure	e du pH		20.3	°C		±2.0
IX424 : Résistivité à :	25°C Prestation réalisée par nos soins		403.57	ohm.cm		
Calcul - NF EN 27888						

Carine Grun Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 2 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.
Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.
Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

22 Rue François PIETRI - BP 60969 20090 AJACCIO | (04.95.29.14.80 @: 04.95.29.14.57 (Fax)

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180530-2621

Echantillon n°:20180530-15905

Produit: Eau résiduaire, pluviale, lixiviat.

Client: 30/05/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Ajaccio, le

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

01 Juin 2018

20110

Date de réception 30/05/2018 Nature échantillon

Date de prélèvement 30/05/2018 Heure de réception 12:10

Heure de prélèvement 09:40 Motif de la visite autosurveillance

Prélevé par Le laboratoire (ECO) N° de prélèvement/Lieu N°52907

Localisation exacte drain sous casier Analyse de type CDT PH RST sur place

Viggianello Point de Prelev./Station Autre 20180531

Observations

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

Directeur

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80

(Fax) (eax)

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180829-5313

Echantillon n°:20180829-26135

Produit: Eau résiduaire, pluviale, lixiviat.

29/08/2018 Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Ajaccio, le

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

20110

VIGGIANELLO

05 Septembre 2018

Date de réception 29/08/2018 DRAIN SS CASIER Nature échantillon

Date de prélèvement 29/08/2018 Heure de réception 13:12

Heure de prélèvement 11:22 Motif de la visite autosurveillance Prélevé par Le Laboratoire (TRI) N° de prélèvement/Lieu DRAIN CASIER

Localisation exacte drain ss casier Analyse de type ph sur place, conductivite sp TEAU

Point de Prelev./Station viggianello Autre 20180829

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
Température de l'Eau	26.5	°C		M_INTERN
Température de l'Air	30.0	°C		M_INTERN
pH mesuré sur place à T° de l'eau	8.3	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	2420	μS/cm		NFEN27888
Résistivité surplace	413	ohm.cm		CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (eax)

@: Ida2a@corsedusud.fr

26 Septembre 2018

Dossier n°: SARL LANFR-180925-5893

Echantillon n°:20180925-28209

Produit: Eau résiduaire, pluviale, lixiviat.

Client: 25/09/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Nature échantillon

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO 20110

12:11

Date de réception 25/09/2018

Date de prélèvement 25/09/2018 Heure de réception

Heure de prélèvement 10:30 Motif de la visite autosurveillance

Prélevé par Le Laboratoire (TRI) N° de prélèvement/Lieu 55383

Localisation exacte DRAIN SOUS CASIER Analyse de type CDT PH RST sur place

Viggianello Point de Prelev./Station Autre 20180926

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place. pH mesuré sur place à T° de l'eau Conductivité mesurée sur place à 25°C Résistivité surplace	8.4 2170 461	Unité pH µS/cm ohm.cm		NFENISO10523 NFEN27888 CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER Parc Napollon - Bât. C 400, Avenue du Passe-Temps 13676 AUBAGNE CEDEX FRANCE

RAPPORT D'ANALYSE

Dossier N° : 18M080878 Date de réception : 29/11/2018 Référence bon de commande : AFFAIRE CORP18001 - DRC SAS LANFRANCHI

N° Ech	Matrice	Référence échantillon	Observations
002	Eau de rejet / Eau résiduaire	DRAINS	(1203) (voir note ci-dessous) (2248) (voir note ci-dessous)

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par "#" et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.
(2248) Arrivée hors délai

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Début d'analyse

29/11/2018

EUROFINS HYDROLOGIE EST SAS

N° ech	18M080878-002	Version AR-18-IX-206242-01(04/12/2018)	Votre réf.	DRAINS		Page 2/2
Date d	le prélèvement	27/11/2018 10:15		Prélèvement effectué par	IRH AIX (CLIENT) - IRH13	

Date de réception 29/11/2018 06:55 Température de l'air de l'enceinte

	Résultat	Unité		incertitud
#	4700	µS/cm		±470
	20.1	°C		±2.01
#	7.9	Unités pH		±0.79
	20.1	°C		±2.01
	213	ohm.cm		
	-	# 4700 20.1 # 7.9 20.1	# 4700 µS/cm 20.1 °C # 7.9 Unités pH 20.1 °C	# 4700 µS/cm 20.1 °C # 7.9 Unités pH 20.1 °C

Isabelle Meyer Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 2.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que

les incertifiedes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € SAS au capital de 1 612 73 RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Annexe 4. Rapports d'analyses Eaux souterraines

Rapport d'analyse de juillet dans annexe 2 – rapport complet comprenant les analyses du bassin eaux pluviales, bassin lixiviat, drain sous casier, ouvrages souterrains, aval et amont Rizzanese et perméat osmoseur

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (a): 04.95.29.14.57

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180125-430

Echantillon n°:20180125-02416 Produit: Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

06 Février 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 25/01/2018 Nature échantillon Eau environnement

Date de prélèvement 25/01/2018 Heure de réception 12:40

Heure de prélèvement 09:40 Motif de la visite Auto surveillance

TRI-le laboratoire (TRI) Prélevé par Lieu/N° prélèvement N°4998

Localisation Exacte Piezo nº 1 Analyse demandée Piez3_vigi Lieu de prélèvement Décharge de Viggianello Autre 20180126

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	12.20	m		
Niveau d'eau statique	3.30	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.			
Temps de pompage en min	20	mn		
Purge total du piézomètre	Oui			
Niveau d'eau dynamique	3.40	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.4	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1597	μS/cm		NFEN27888
Résistivité surplace	626	ohm.cm		CALCUL
·			1	

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 : Ida2a@corsedusud.fr

Dossier n°: SARL_LANFR-180125-430

Echantillon n°:20180125-02417 **Produit:** Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

06 Février 2018

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 25/01/2018 Nature échantillon Eau environnement

Date de prélèvement 25/01/2018 Heure de réception 12:42

Heure de prélèvement 10:40 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement N°7230

Localisation Exacte Piezo n° 2 Analyse demandée Piez3_vigi

Lieu de prélèvement Décharge de Viggianello Autre 20180126

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	9.10	m		
Niveau d'eau statique	1.60	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	10	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	9.10	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.8	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	3020	μS/cm		NFEN27888
Résistivité surplace	331	ohm.cm		CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 | Ida2a@corsedusud.fr

Dossier n°: SARL_LANFR-180125-430

Echantillon n°:20180125-02418 **Produit:** Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

06 Février 2018

20110

Date de réception 25/01/2018 Nature échantillon Eau environnement

Date de prélèvement 25/01/2018 Heure de réception 12:42

Heure de prélèvement 10:15 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement N°4992

Localisation Exacte Piezo n° 3 Analyse demandée Piez3_vigi

Lieu de prélèvement Décharge de Viggianello Autre 20180126

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	11.60	m		
Niveau d'eau statique	5.50	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Oui			
Niveau d'eau dynamique	5.90	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.7	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	918	μS/cm		NFEN27888
Résistivité surplace	1089	ohm.cm		CALCUL
·				

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SARL LANFRANCHI ENVIRONNEMENT - Mesures ponctuelles des eaux souterraines – Campagne de février 2018

EUROFINS HYDROLOGIE EST SAS

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

Version du : 13/03/2018 N° de rapport d'analyse : AR-18-IX-035714-01 Page 1/5 Date de réception : 01/03/2018 Dossier N°: 18M011149

Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech	Matrice	Référence échantillon	Observations
004	Eau souterraine, de nappe phréatique	PZ1 (9M) GAUCHE DU PORTAIL	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation. AOX : échantillons congelés.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ate de prélèvement	Version AR-18-IX-035714-01(13/03/2018) Votre réf. I 27/02/2018 11:30	Prélèvement ef		IRH AIX (CLIENT) - IR	H13
ate de réception	01/03/2018 06:37	Température de	l'air de	7.3°C	
ébut d'analyse	01/03/2018	l'enceinte			
rarametres physic	cochimiques généraux		Résultat	Unité	Inor
	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1- nductimétrie - NF EN ISO 14911	-0685 *	90	mg/l	
	ution réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-068 Inductimétrie - NF EN ISO 10304-1	* 35	240	mg/l	
K98 : Conductivité à	25°C Prestation réalisée par nos soins				
Potentiométrie [Méthode à la s	sonde] - NF EN 27888				
Conductivité à 25°C		#	1600	μS/cm	1
Température de mesure d	e la conductivité		22.0	°C	±
0685	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR. Inductimétrie - NF EN ISO 14911	AC *	70.4	mg/l	±
2KZ : Mesure du pH R Potentiométrie - NF EN ISO 1	Prestation réalisée par nos soins 10523				
ρΗ		#	6.4	Unités pH	1
Température de mesure d	u pH		22.0	°C	2
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC inductimétrie - NF EN ISO 14911	1-0685 *	3.1	mg/l	
A37 : Résistivité à 25 Calcul - NF EN 27888	°C Prestation réalisée par nos soins	#	626	ohm.cm	
, ,	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC inductimétrie - NF EN ISO 10304-1	1-0685 *	230	mg SO4/I	
Divers micropollua	ants organiques				
			Résultat	Unité	Ino
A46 : Organo Halogé D/IEC 17025:2005 COFRAC 1 Coulométrie [Adsorption, Com		EN *	110	μg/l	
Fer et Manganèse			Résultat	Unité	Inc
6S8 : Fer (Fe) Prestation ICP/MS - NF EN ISO 17294-2	n réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685		170	μg/l	
6S7 : Manganèse (Mr 1685 ICP/IMS - NF EN ISO 17294-2	n) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR	AC *	162	µg/l	
Oligo-éléments - N	Aicropolluants minéraux		Résultat	Unité	Ino
6S4 : Aluminium (Al) CP/MS - NF EN ISO 17294-2	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAG ?	2 1-0685 *	45	µg/l	
OBN: Cadmium (Cd) CP/MS - NF EN ISO 17294-2	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC ?	2 1-0685 *	<0.01	μg/l	
ODC : Chrome (Cr) Pro CP/MS - NF EN ISO 17294-2	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1- ?	-0685 *	0.19	μg/l	
ODB: Cuivre (Cu) Pres	station réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0)685 *	1.23	µg/l	

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

nj GAU	ONE DU PORT	AIL.		Page 3/5
	Résultat	Unité		Incertitu
*	<0.2	μg/l		
*	<0.01	μg/l		
*	0.7	μg/l		±0.1
*	0.1	μg/l		±0.0
*	5.0	μg/l		±1.0
	Résultat	Unité		Incertiti
*	7.1	mg C/I		±3.1
#	0.6	mg O2/I		±0.2
*	36	mg O2/I		±1:
*	10	mg/l		±2
	177	m∨		±18
	Résultat	Unité		Incertiti
#	<0.05	mg NH4/I		
#	1.5	mg N/I		
*	0.6	mg N/I		±0.2
#	4.1	mg NO3/I		±1.2
#	0.04	mg NO2/I		±0.0
*	0.025	mg PO4/I		±0.0
*	0.02	mg/l		±0.0
	Résultat	Unité		Incertit
*	<0.2	μg/l		
	#######################################	Résultat -	Résultat Unité * <0.2	* <0.2

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

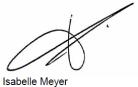
SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M011149-004 Version AR-18-IX-035714-01(13/03/2018) Votre réf. PZ1 (9M)	GAUC	CHE DU PORTA	JL	Page 4/5
Composés benzèniques				
		Résultat	Unité	Incertitude
IXRA6 : Ethylbenzène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l	
IXRAA: m+p-Xylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l	
IXRAB: o-Xylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l	
IXR9X : Toluène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	μg/l	
Hydrocarbures aromatiques polycycliques		Résultat	Unité	Incertitude
IX1UJ: Acénaphtène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
IX1UE: Acénaphthylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	•	<0.01	μg/l	
IX1U6: Anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
IX1UI : Benzo(a)anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
IX1UP: Benzo(a)pyrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	µg/l	
IX1UA: Benzo(b)fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	µg/l	
IX1UC : Benzo(ghi)Pérylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	μg/l	
IX1UB: Benzo(k)fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	µg/l	
IX1U9 : Chrysène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
IX1UH: Dibenz(a,c/a,h)anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l	
IX1U7: Fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
IX1U4: Fluorène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	
IX1UF: Indeno (1,2,3,c,d) pyrene Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	µg/l	
IX1UD: Naphtalène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l	
IX1U5: Phénanthrène Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	•	<0.01	μg/l	
IX1U8: Pyrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l	

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env


SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M011149-004 Version AR-18-IX-035714-01(13/03/2018) Votre réf. PZ1 (9M) GAUCHE DU PORTAIL					
Hydrocarbures aromatiques polycycliques					
		Résultat	Unité		Incertitude
IX1UM : Somme des HAP 16 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC	*	<0.05	μg/l		
1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993					
Poly chloro-bromo biphényls					
		Résultat	Unité		Incertitude
IX1F7: PCB 28 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS (Extraction Liquide / Liquide) - Méthode interne selon NF EN ISO 6468	*	<0.005	μg/I		
IX1F8: PCB 52 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468	*	<0.01	μg/I		
IX1F9 : PCB 101 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.005	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1FS: PCB 118 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	< 0.005	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1FA: PCB 138 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1FB: PCB 153 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1FC: PCB 180 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
Dérivés phénoliques					
•		Résultat	Unité		Incertitude
IXA65 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01	mg/l		
Flux continu - NF EN ISO 14402					

Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 5 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les étéments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

SARL LANFRANCHI ENVIRONNEMENT - Mesures ponctuelles des eaux souterraines – Campagne de février 2018

EUROFINS HYDROLOGIE EST SAS

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-035715-01 Version du : 13/03/2018 Page 1/5 Dossier N° : 18M011149 Date de réception : 01/03/2018

Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech	Matrice	Référence échantillon	Observations
005	Eau souterraine, de nappe phréatique	PZ2 (12M) DROITE DU PORTAIL	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.
 (179) AOX : échantillons congelés.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Date de prélèvement	27/02/2018 11:00	Prélèvement ef	fectué par	IRH AIX (CLIENT) - IRH	13
Date de réception	01/03/2018 06:37	Température de	l'air de	7.3°C	
Début d'analyse	01/03/2018	l'enceinte			
	cochimiques généraux				
raiametres physic	ociminques generaux		Résultat	Unité	Incerti
	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR nductimétrie - NF EN ISO 14911	AC 1-0685 *	140	mg/l	±4
	tion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC nductimétrie - NF EN ISO 10304-1	1-0685 *	380	mg/l	±1′
	25°C Prestation réalisée par nos soins				
Potentiométrie [Méthode à la s	onde] - NF EN 27888				
Conductivité à 25°C		#	2300	μS/cm	±10
Température de mesure d			22.1	°C	±9.
I-0685	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 Conductimétrie - NF EN ISO 14911	COFRAC *	76.4	mg/l	±19
X2KZ: Mesure du pH P Potentiométrie - NF EN ISO 1	Prestation réalisée par nos soins 0523				
pH		#	7.0	Unités pH	±0.
Température de mesure d	u pH		22.1	°C	±1.
	restation réalisée par nos soins NF EN ISO/IEC 17025:2005 COF nductimétrie - NF EN ISO 14911	RAC 1-0685 *	28.0	mg/l	±8.
XA37 : Résistivité à 25 Calcul - NF EN 27888	°C Prestation réalisée par nos soins	#	434	ohm.cm	
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COR nductimétrie - NF EN ISO 10304-1	FRAC 1-0685 *	270	mg SO4/I	±5
Divers micropollua	nts organiques		Résultat	Unité	Incerti
XA46 : Organo Halogé SO/IEC 17025:2005 COFRAC 1 Coulométrie [Adsorption, Com	nés Adsorbables (AOX) Prestation réalisée par nos soin -0685 bustion] - NF EN ISO 9562	s NF EN *	73	µg/I	±3
Fer et Manganèse			Résultat	Unité	Incerti
X6S8 : Fer (Fe) Prestation ICP/MS - NF EN ISO 17294-2	réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0	685 *	74	µg/l	±2
X6S7 : Manganèse (Mr -0685 ICP/MS - NF EN ISO 17294-2	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 C	COFRAC *	629	µg/l	±29
Oligo-éléments - N	ficropolluants minéraux		Résultat	Unité	Incerti
X6S4 : Aluminium (Al) ICP/MS - NF EN ISO 17294-2	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 CO	FRAC 1-0685 *	39	µg/l	±1
XOBN: Cadmium (Cd) ICP/MS - NF EN ISO 17294-2	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 CO	FRAC 1-0685 *	0.09	µg/l	±0.0
X0DC : Chrome (Cr) Pro ICP/MS - NF EN ISO 17294-2	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR	AC 1-0685 *	0.47	µg/l	±0.2
X0DB: Cuivre (Cu) Pres	station réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA	C 1-0685 *	2.45	µg/I	±0.7

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Oligo-éléments - Micropolluants minéraux				
ongo dismonto imidioponadino imidiada		Résultat	Unité	Incertitu
XOBS: Etain (Sn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	<0.2	µg/l	
X7IS: Mercure (Hg) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	<0.01	µg/l	
XOBQ: Nickel (Ni) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	2.6	µg/l	±0.5
X0C2 : Plomb (Pb) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.3	µg/l	±0.0
XOC1 : Zinc (Zn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	5.9	µg/l	±1.1
Oxygènes et matières organiques		Résultat	Unité	Incertitu
XA45 : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 7025:2005 COFRAC 1-0885 Oxydation persulfate / détection IR - NF EN 1484	*	12.2	mg C/I	±5.4
XA41 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins Electrochimie sans dilution - NF EN 1899-2	#	0.7	mg O2/I	±0.2
XA38 : Demande chimique en oxygène (DCO) Prestation réalisée par nos soins NF EN SO/IEC 17025:2005 COFRAC 1-0685 Volumétrie - NF T 90-101	*	60	mg O2/I	±21
X002 : Matières en suspension (MES) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Gravimétrie [Filtres WHATMAN 934-AH RTU /47] - NF EN 872	*	11	mg/l	±2
XA71 : Potentiel d'oxydoréduction (E PT/AgCl) Prestation réalisée par nos soins Potentiométrie -		142	mV	±14
Paramètres azotés et phosphorés		Résultat	Unité	Incertitu
X02R: Ammonium Prestation réalisée par nos soins Spectrophotométrie (UVVIS) [automatique] - Méthode interne	#	<0.05	mg NH4/I	
XS98 : Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins Calcul -	#	6.1	mg N/I	
X04P : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC I-0685 Volumétrie - NF EN 25663	*	1.3	mg N/I	±0.4
XO2L: Nitrates Prestation réalisée par nos soins Chromatographie ionique - Conductimétrie - NF EN ISO 10304-1	#	21	mg NO3/I	±6
XO2W: Nitrites Prestation réalisée par nos soins Chromatographie ionique - UV - NF EN ISO 10304-1	#	<0.01	mg NO2/I	
X03C: Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 OFRAC 1-0685 Spectrophotométrie [Colorimétrie automatisée] - Méthode interne	*	0.026	mg PO4/I	±0.01
X6S6: Phosphore total Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC	*	0.01	mg/l	±0.0
Composés benzèniques		Résultat	Unité	Incertiti
XR9W: Benzène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GCMS - NF ISO 11423-1	*	<0.2	µg/I	

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ech 18M011149-005 Version AR-18-IX-035715-01(13/03/2018) Votre réf. PZ2 (12M) DROITE DU PORTAIL				
Composés benzèniques				
	Résultat	Unité	Incertitu	
XRA6 : Ethylbenzène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * HS - GC/MS - NF ISO 11423-1	<0.2	μg/l		
XRAA: m+p-Xylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * HS - GC/MS - NF ISO 11423-1	<0.2	μg/l		
XRAB: o-Xylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * HS - GC/MS - NF ISO 11423-1	<0.2	μg/l		
XR9X: Toluène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** HS - GC/MS - NF ISO 11423-1	<0.5	µg/l		
Hydrocarbures aromatiques polycycliques	Résultat	Unité	Incertiti	
X1UJ: Acénaphtène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	μg/l		
X1UE: Acénaphthylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC * 10885 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	μg/l		
X1U6 : Anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	µg/l		
X1UI : Benzo(a)anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC * 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	μg/l		
X1UP : Benzo(a)pyrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC * -0685 LC/FLUC/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.006	μg/l		
X1UA : Benzo(b)fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 * DOFRAC 1-0885 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.006	μg/l		
X1UC : Benzo(ghi)Pérylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC * -0685 LC/FLUC/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.006	μg/l		
X1UB : Benzo(k)fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 ** COFRAC 1-0885 LC/FLUO/IDAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.006	μg/l		
X1U9 : Chrysène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * LC/FLUC/IDAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	μg/l		
X1UH : Dibenz(a,c/a,h)anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 * DOFRAC 1-0685 LC/FLUO/IDAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	µg/l		
X1U7 : Fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	μg/l		
X1U4 : Fluorène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUC/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	µg/l		
X1UF : Indeno (1,2,3,c,d) pyrene Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 * OFRAC 1-0685 LC/FLUC/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.006	μg/l		
X1UD : Naphtalène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * LC/FLUC/IDAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.06	μg/l		
X1U5 : Phénanthrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	µg/l		
X1U8: Pyrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.011	μg/l		

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M011149-005 Version AR-18-IX-035715-01(13/03/2018) Votre réf. PZ2 (12M) DROITE DU PORTAIL					
Hydrocarbures aromatiques polycycliques					
		Résultat	Unité		Incertitude
IX1UM : Somme des HAP 16 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC	*	<0.06	μg/I		
1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993					
Poly chloro-bromo biphényls					
		Résultat	Unité		Incertitude
IX1F7 : PCB 28 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.005	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1F8 : PCB 52 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1F9 : PCB 101 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.005	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1FS: PCB 118 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.005	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1FA: PCB 138 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1FB: PCB 153 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
IX1FC: PCB 180 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l		
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468					
Dérivés phénoliques					
		Résultat	Unité		Incertitude
IXA65 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01	mg/l		
Flux continu - NF EN ISO 14402					

Isabelle Meyer Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 5 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponibles sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

IRH INGENIEUR CONSEIL **Monsieur Pierre BOYER** bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

Version du : 13/03/2018 N° de rapport d'analyse : AR-18-IX-035717-01 Page 1/5 Dossier N°: 18M011149 Date de réception : 01/03/2018

Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech	Matrice	Référence échantillon	Observations
007	Eau souterraine, de nappe phréatique	FORAGE	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par # et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX : échantillons congelés.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Date de prélèvement 27/02/2018 09:30		Prélèvement ef	fectué par	IRH AIX (CLIEN	Γ) - IRH13	
Date de réception	01/03/2018 06:37	Température de	l'air de	7.3°C	,	
Début d'analyse	01/03/2018	l'enceinte				
Paramètres physic	cochimiques généraux					
			Résultat	Unité		Incertitu
	estation réalisée par nos soins NF EN ISO/IEC 17025: Inductimétrie - NF EN ISO 14911	2005 COFRAC 1-0685 *	100	mg/l		±30
	ation réalisée par nos soins NF EN ISO/IEC 17025:200 anductimétrie - NF EN ISO 10304-1	5 COFRAC 1-0685 *	240	mg/l		±72
XK98 : Conductivité à	25°C Prestation réalisée par nos soins					
Potentiométrie [Méthode à la s	sonde] - NF EN 27888					
Conductivité à 25°C		#	1600	μS/cm		±72
Température de mesure d	le la conductivité		22.0	°C		±9.9
-0685	Prestation réalisée par nos soins NF EN ISO/IEC 17 inductimétrie - NF EN ISO 14911	7025:2005 COFRAC *	67.4	mg/l		±16.8
X2KZ : Mesure du pH i Potentiométrie - NF EN ISO 1	Prestation réalisée par nos soins 10523					
pH		#	6.6	Unités pH		±0.3
Température de mesure d	lu pH		22.0	°C		±1.1
	Prestation réalisée par nos soins NF EN ISO/IEC 1702 Inductimétrie - NF EN ISO 14911	5:2005 COFRAC 1-0685 *	3.2	mg/l		±0.0±
XA37 : Résistivité à 25 Calcul - NF EN 27888	°C Prestation réalisée par nos soins	#	626	ohm.cm		
	Prestation réalisée par nos soins NF EN ISO/IEC 1702 Inductimétrie - NF EN ISO 10304-1	5:2005 COFRAC 1-0685 *	240	mg SO4/I		±48
Divers micropollua	ants organiques					
			Résultat	Unité		Incertiti
XA46 : Organo Halogé SO/IEC 17025:2005 COFRAC 1 Coulométrie [Adsorption, Com	nés Adsorbables (AOX) Prestation réalisée 1-0685 ibustion] - NF EN ISO 9562	par nos soins NF EN *	46	µg/l		±21
Fer et Manganèse			Résultat	Unité		Incertitu
X6S8 : Fer (Fe) Prestation ICP/MS - NF EN ISO 17294-2	n réalisée par nos soins NF EN ISO/IEC 17025:2005 C 2	OFRAC 1-0685 *	33	μg/l		±10
X6S7 : Manganèse (Mi -0685 ICP/MS - NF EN ISO 17294-2	n) Prestation réalisée par nos soins NF EN ISO/IEC 13 2	7025:2005 COFRAC *	440	μg/l		±17
Oligo-éléments - N	dicropolluants minéraux		Résultat	Unité		Incertite
(6S4 : Aluminium (Al)	Prestation réalisée par nos soins NF EN ISO/IEC 170 2	25:2005 COFRAC 1-0685 *	11	µg/l		±3
XOBN: Cadmium (Cd) ICP/MS - NF EN ISO 17294-2	Prestation réalisée par nos soins NF EN ISO/IEC 170: 2	25:2005 COFRAC 1-0685 *	0.02	µg/l		±0.0
(ODC : Chrome (Cr) Pro ICP/MS - NF EN ISO 17294-2	estation réalisée par nos soins NF EN ISO/IEC 17025: 2	2005 COFRAC 1-0685 *	0.28	µg/l		±0.1
X0DB: Cuivre (Cu) Pres	station réalisée par nos soins NF EN ISO/IEC 17025:2	005 COFRAC 1-0685 *	4.73	µg/l		±1.4

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ech 18M011149-007 version AR-18-IX-035717-01(13/03/2018) votre réf. FORAG Oligo-éléments - Micropolluants minéraux	_			Page 3/5
Oligo-elements - Micropolitants militerativ		Résultat	Unité	Incertit
KOBS: Etain (Sn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/M/S - NF EN ISO 17294-2	*	<0.2	μg/l	
(71S: Mercure (Hg) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MIS - NF EN ISO 17294-2	*	<0.01	µg/l	
(OBQ: Nickel (Ni) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	3.1	µg/l	±0.6
(OC2 : Plomb (Pb) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.2	µg/l	±0.
(OC1 : Zinc (Zn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	34.6	µg/l	±6.9
Oxygènes et matières organiques		Résultat	Unité	Incertit
KA45 : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 7025:2005 COFRAC 1-0685 Oxydation persulfate / détection IR - NF EN 1484	*	5.4	mg C/l	±2.4
(A41 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins Electrochimie sans dilution - NF EN 1899-2	#	<0.5	mg O2/I	
(A38 : Demande chimique en oxygène (DCO) Prestation réalisée par nos soins NF EN IO/IEC 17025:2005 COFRAC 1-0685 Volumétrie - NF T 90-101	*	<30	mg O2/I	
(002 : Matières en suspension (MES) Prestation réalisée par nos soins NF EN ISO/IEC 7025-2005 COFRAC 1-0685 Gravimétrie (Filtres WHATMAN 934-AH RTU /47) - NF EN 872	*	9	mg/l	±2
KA71 : Potentiel d'oxydoréduction (E PT/AgCI) Prestation réalisée par nos soins Potentiométrie -		166	mV	±1
Paramètres azotés et phosphorés		Résultat	Unité	Incertit
CO2R : Ammonium Prestation réalisée par nos soins Spectrophotométrie (UVVIS) [automatique] - Méthode interne	#	<0.05	mg NH4/I	
(S98 : Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins Calcul -	#	7.8	mg N/I	
KO4P : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 0685 Volumétrie - NF EN 25663	*	0.6	mg N/I	±0.2
(O2L : Nitrates Prestation réalisée par nos soins Chromatographie ionique - Conductimétrie - NF EN ISO 10304-1	#	32	mg NO3/I	±1
(02W: Nitrites Prestation réalisée par nos soins Chromatographie ionique - UV - NF EN ISO 10304-1	#	0.07	mg NO2/I	±0.0
(03C : Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 OFRAC 1-0685 Spectrophotométrie [Colorimétrie automatisée] - Méthode interne	*	<0.015	mg PO4/I	
(6S6 : Phosphore total Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 0685 ICP/M/S - NF EN ISO 17294-2	*	<0.01	mg/l	
Composés benzèniques				Incertif
		Résultat	Unité	Incertis

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

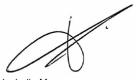
www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M011149-007 Version AR-18-IX-035717-01(13/03/2018) Votre réf. FORAGI	E			Page 4/5	
Composés benzèniques					
		Résultat	Unité	Incer	titude
IXRA6: Ethylbenzène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		
IXRAA: m+p-Xylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	μg/l		
IXRAB: o-Xylène Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.2	µg/l		
IXR9X : Toluène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 HS - GC/MS - NF ISO 11423-1	*	<0.5	µg/l		
Hydrocarbures aromatiques polycycliques		Résultat	Unité	Incer	titude
IX1UJ: Acénaphtène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UE: Acénaphthylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U6 : Anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UI : Benzo(a)anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1UP: Benzo(a)pyrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	µg/l		
IX1UA: Benzo(b)fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD (Extraction Liquide / Liquide) - NF EN ISO 17993	*	<0.005	µg/l		
IX1UC: Benzo(ghi)Pérylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	µg/l		
IX1UB: Benzo(k)fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD (Extraction Liquide / Liquide) - NF EN ISO 17993	*	<0.005	µg/l		
IX1U9 : Chrysène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1UH: Dibenz(a,c/a,h)anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
IX1U7: Fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/I		
IX1U4: Fluorène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/I		
IX1UF: Indeno (1,2,3,c,d) pyrene Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.005	µg/l		
IX1UD: Naphtalène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.05	μg/l		
IX1U5: Phénanthrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUC/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	μg/l		
IX1U8: Pyrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUC/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	*	<0.01	µg/l		
					_

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env


SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

				Page 5/5
	Résultat	Unité		Incertitude
*	<0.05	μg/l		
	Résultat	Unité		Incertitude
*	<0.005	μg/I		
*	<0.01	ug/l		
	40.01	μ9/1		
*	<0.005	μg/l		
*	<0.005	μg/l		
*	<0.001	μg/I		
*	<0.001	μg/l		
*	<0.001	μg/l		
	Résultat	Unité		Incertitude
*	<0.01	mg/l		
		C * <0.05 Résultat - <0.005 - <0.001 - <0.005 - <0.001 - <0.001 - <0.001 Résultat	Résultat Unité	Résultat Unité

Isabelle Meyer Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 5 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.
Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.
Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-035716-01 Version du : 13/03/2018 Page 1/5

Dossier N°: 18M011149 Date de réception : 01/03/2018 Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech Référence échantillon Observations 006 Eau souterraine, de nappe (1203) (voir note ci-dessous) PZ3 (12M) phréatique (179) (voir note ci-dessous) Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.
 (179) AOX : échantillons congelés.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ate de prélèvement 27/02/2018 10:30 Pro		Prélèvement ef	fectué par	IRH AIX (CLIENT) - IRH13	
ate de réception	01/03/2018 06:37	Température de	l'air de	7.3°C	
ébut d'analyse	01/03/2018	l'enceinte			
	cochimiques généraux				
r arametres priyste	ooniniiques generaax		Résultat	Unité	Incer
	estation réalisée par nos soins NF EN ISO/IEC 17025:200 nductimétrie - NF EN ISO 14911	5 COFRAC 1-0685 *	13	mg/l	-
	tion réalisée par nos soins NF EN ISO/IEC 17025:2005 C nductimétrie - NF EN ISO 10304-1	**************************************	29	mg/l	
K98 : Conductivité à	25°C Prestation réalisée par nos soins				
Potentiométrie [Méthode à la s	onde] - NF EN 27888				
Conductivité à 25°C		#	260	μS/cm	±
Température de mesure d	e la conductivité		22.1	°C	±9
0685	Prestation réalisée par nos soins NF EN ISO/IEC 1702 nductimétrie - NF EN ISO 14911	5:2005 COFRAC *	9.0	mg/l	±i
2KZ : Mesure du pH F Potentiométrie - NF EN ISO 1	Prestation réalisée par nos soins 0523				
рН		#	6.4	Unités pH	±
Température de mesure d	ı pH		22.1	°C	±
	restation réalisée par nos soins NF EN ISO/IEC 17025:20 nductimétrie - NF EN ISO 14911	005 COFRAC 1-0685 *	2.4	mg/l	±
A37 : Résistivité à 25 Calcul - NF EN 27888	°C Prestation réalisée par nos soins	#	3830	ohm.cm	
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2 nductimétrie - NF EN ISO 10304-1	005 COFRAC 1-0685 *	9.4	mg SO4/I	±
Divers micropollua	nts organiques		-: ".		Ince
			Résultat	Unité	_
(A46 : Organo Halogé O/IEC 17025:2005 COFRAC 1 Coulométrie [Adsorption, Com	nés Adsorbables (AOX) Prestation réalisée par -0685 bustion] - NF EN ISO 9562	nos soins NF EN	38	µg/I	
Fer et Manganèse			Résultat	Unité	Ince
(6S8 : Fer (Fe) Prestation ICP/MS - NF EN ISO 17294-2	réalisée par nos soins NF EN ISO/IEC 17025:2005 COF	RAC 1-0685 *	390	µg/l	±
6S7 : Manganèse (Mr 1685 ICP/MS - NF EN ISO 17294-2) Prestation réalisée par nos soins NF EN ISO/IEC 1702	5:2005 COFRAC *	14.0	μg/l	±
Oligo-éléments - N	ficropolluants minéraux		Résultat	Unité	Ince
6S4 : Aluminium (Al) CP/MS - NF EN ISO 17294-2	Prestation réalisée par nos soins NF EN ISO/IEC 17025:	2005 COFRAC 1-0685 *	820	µg/l	±
0BN : Cadmium (Cd) CP/MS - NF EN ISO 17294-2	Prestation réalisée par nos soins NF EN ISO/IEC 17025:	2005 COFRAC 1-0685 *	0.04	µg/l	±C
ODC : Chrome (Cr) Pre CP/MS - NF EN ISO 17294-2	estation réalisée par nos soins NF EN ISO/IEC 17025:200	05 COFRAC 1-0685 *	0.30	μg/l	±(
ODB: Cuivre (Cu) Pres	station réalisée par nos soins NF EN ISO/IEC 17025:2005	* COFRAC 1-0685	1.46	μg/l	±C

Accréditation 1-0685 Site de Maxeville Portée disponible sur www.cofrac.fr

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Oligo-éléments - Micropolluants minéraux				
Ongo Comento Miloropolidanto Miliorada		Résultat	Unité	Incerti
(OBS: Etain (Sn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/M/S - NF EN ISO 17294-2	*	<0.2	µg/l	
(71S: Mercure (Hg) Prestation réalisée par nos soins NF EN ISO/IEC 17025;2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	<0.01	µg/l	
(OBQ: Nickel (Ni) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	0.4	µg/l	±0.
(OC2 : Plomb (Pb) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/IMS - NF EN ISO 17294-2	*	0.4	µg/l	±0.
(OC1 : Zinc (Zn) Prestation réalisée par nos soins NF EN ISO/IEC 17025;2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	4.7	µg/l	±0.
Oxygènes et matières organiques		Résultat	Unité	Incerti
(A45 : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 025:2005 COFRAC 1-0685 Oxydation persulfate / détection IR - NF EN 1484	*	6.3	mg C/l	±2.
(A41 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins Electrochimie sans dilution - NF EN 1899-2	#	0.9	mg O2/I	±0.
(A38 : Demande chimique en oxygène (DCO) Prestation réalisée par nos soins NF EN O/IEC 17025:2005 COFRAC 1-0685 Volumétrie - NF T 90-101	*	<30	mg O2/I	
(002 : Matières en suspension (MES) Prestation réalisée par nos soins NF EN ISO/IEC 025:2005 COFRAC 1-0685 Gravimétrie (Filtres WHATMAN 934-AH RTU /47] - NF EN 872	*	4	mg/l	±
(A71 : Potentiel d'oxydoréduction (E PT/AgCI) Prestation réalisée par nos soins Potentiométrie -		162	mV	±1
Paramètres azotés et phosphorés		Résultat	Unité	Incerti
(02R : Ammonium Prestation réalisée par nos soins Spectrophotométrie (UV/VIS) [automatique] - Méthode interne	#	<0.05	mg NH4/I	
(S98 : Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins Calcul -	#	0.7	mg N/I	
(04P : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 0685 Volumétrie - NF EN 25663	*	<0.5	mg N/I	
02L : Nitrates Prestation réalisée par nos soins Chromatographie ionique - Conductimétrie - NF EN ISO 10304-1	#	2.9	mg NO3/I	±0.
(02W : Nitrites Prestation réalisée par nos soins Chromatographie ionique - UV - NF EN ISO 10304-1	#	0.03	mg NO2/I	±0.0
(03C : Orthophosphates (PO4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 DFRAC 1-0685 Spectrophotométrie (Colorimétrie automatisée) - Méthode interne	*	0.091	mg PO4/I	±0.0
(6S6 : Phosphore total Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 0685 ICP/MIS - NF EN ISO 17294-2	*	0.06	mg/l	±0.0
Composés benzèniques		Résultat	Unité	Incerti

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ech 18M011149-006 Version AR-18-IX-035716-01(13/03/2018) Votre réf. PZ3 (12M)			Page 4/5
Composés benzèniques			
	Résultat	Unité	Incertitud
IXRA6 : Ethylbenzène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * HS - GC/MS - NF ISO 11423-1	<0.2	µg/l	
IXRAA : m+p-Xylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXRAB : o-Xylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * HS - GC/MS - NF ISO 11423-1	<0.2	μg/l	
IXR9X: Toluène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * HS - GC/MS - NF ISO 11423-1	<0.5	µg/l	
Hydrocarbures aromatiques polycycliques	Résultat	Unité	Incertitud
IX1UJ: Acénaphtène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	µg/l	
IX1UE : Acénaphthylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U6 : Anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	µg/l	
IX1UI : Benzo(a)anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC * 1-0685 LC/FLUO/IDAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UP : Benzo(a)pyrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 LC/FLUO/IDAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	µg/l	
IX1UA: Benzo(b)fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 ** COFRAC 1-0885 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	µg/l	
IX1UC : Benzo(ghi)Pérylène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC * 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	µg/l	
IX1UB: Benzo(k)fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 ** COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	µg/l	
IX1U9 : Chrysène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UH: Dibenz(a,c/a,h)anthracène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 * COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U7 : Fluoranthène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1U4 : Fluorène Prestation réalisée par nos soins NF EN ISO/IEC 17025;2005 COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	μg/l	
IX1UF: Indeno (1,2,3,c,d) pyrene Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 * COFRAC 1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.005	µg/l	
IX1UD: Naphtalène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.05	μg/l	
IX1U5 : Phénanthrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 * LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	µg/l	
IX1U8: Pyrène Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ** LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993	<0.01	µg/I	

Eurofins Hydrologie Est SAS tél. +33 3 83 50 36 00 Rue Lucien Cuenot Site Saint-Jacques II fax +33 8 20 20 90 32 F-54521 Maxeville cedex

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M011149-006 Version AR-18-IX-035716-01(13/03/2018) Votre réf. PZ3 (12	2M)			Page 5/5
Hydrocarbures aromatiques polycycliques				
		Résultat	Unité	Incertitude
IX1UM: Somme des HAP 16 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC	*	<0.05	μg/l	
1-0685 LC/FLUO/DAD [Extraction Liquide / Liquide] - NF EN ISO 17993				
Poly chloro-bromo biphényls				
		Résultat	Unité	Incertitude
IX1F7: PCB 28 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 GC/MS /Extraction Llquide / Liquide) - Méthode interne selon NF EN ISO 6468	*	<0.005	μg/l	
IX1F8 : PCB 52 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01	μg/l	
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468				
IX1F9 : PCB 101 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.005	μg/l	
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468				
IX1FS : PCB 118 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.005	μg/l	
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468				
IX1FA: PCB 138 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l	
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468				
IX1FB: PCB 153 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l	
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468				
IX1FC: PCB 180 Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.001	μg/l	
GC/MS [Extraction Liquide / Liquide] - Méthode interne selon NF EN ISO 6468				
Dérivés phénoliques				
		Résultat	Unité	Incertitude
IXA65 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Flux continu - NF EN ISO 14402	*	<0.01	mg/l	

Isabelle Meyer Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 5 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Seules Certaines prestations rapportees dans ce document sont couveries par raccreditation. Elles sont identifiees par le symbole ".

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les étéments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

SIRET : 200 076 958 00020 : Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180228-1026

Echantillon n°:20180228-05602 **Produit:** Eaux environnement.

Client: 51066

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

26 Mars 2018

20110

Date de réception 28/02/2018 Nature échantillon Eau environnement

Date de prélèvement 28/02/2018 Heure de réception 13:52

Heure de prélèvement 11:00 Motif de la visite Auto surveillance

Prélevé par FOR-Le laboratoire (FO) PPC Lieu/N° prélèvement

Localisation Exacte Piezo n° 1 Analyse demandée Piez1_vigi PH CDT SALM BACTE

Lieu de prélèvement Décharge de Viggianello Autre 20180305

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	PVC			
Profondeur	12.20	m		
Niveau d'eau statique	2.80	m		
Volume d'eau :	suffisant.	_		
Purge:	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	4.40	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.3	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1649	μS/cm		NFEN27888
Résistivité surplace	606	ohm.cm		CALCUL
Analyses bactériologiques.				
Coliformes totaux / 100 ml	Non détecté	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	<15	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	<15	NPP/100ml		NFENISO7899-1
Salmonella spp.	Absence	/5L		NFISO19250

Dossier n°: SARL_LANFR-180228-1026

Echantillon n°:20180228-05602

Produit: Eaux environnement.

Client: 51066

Bulletin n° NetClient Page: 2 sur 1

ANALYSE	RESULTAT	UNITE	limite	METHODES

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire Directeur

SIRET: 200 076 958 00020

@: lda2a@corsedusud.fr

Dossier n°: SARL LANFR-180228-1026

Echantillon n°:20180228-05603 **Produit:** Eaux environnement.

Client: 51065

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

26 Mars 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 28/02/2018 Nature échantillon Eau environnement

Date de prélèvement 28/02/2018 Heure de réception 13:53

Heure de prélèvement 10:30 Motif de la visite Auto surveillance

Prélevé par FOR-Le laboratoire (FO) PPC Lieu/N° prélèvement

Localisation Exacte Piezo n° 2 Analyse demandée Piez1_vigi PH CDT SALM BACTE

Lieu de prélèvement Décharge de Viggianello Autre 20180305

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	PVC			
Profondeur	9.10	m		
Niveau d'eau statique	1.45	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	10	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	6.10	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.6	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	2780	μS/cm		NFEN27888
Résistivité surplace	360	ohm.cm		CALCUL
Analyses bactériologiques.				
Coliformes totaux / 100 ml	Non détecté	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	<15	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	<15	NPP/100ml		NFENISO7899-1
Salmonella spp.	Absence	/5L		NFISO19250

Dossier n°: SARL_LANFR-180228-1026

Echantillon n°:20180228-05603

Produit: Eaux environnement.

Client: 51065

Bulletin n° NetClient Page: 2 sur 1

ANALYSE	RESULTAT	UNITE	limite	METHODES

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 : | da2a@corsedusud.fr

Dossier n°: SARL LANFR-180228-1026

Echantillon n°:20180228-05604 **Produit**: Eaux environnement.

Client: 51064

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

26 Mars 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 28

28/02/2018

Nature échantillon

Eau environnement

Date de prélèvement Heure de prélèvement 28/02/2018

Heure de réception Motif de la visite 13:53
Auto surveillance

Prélevé par

FOR-Le laboratoire (FO) PPC

Lieu/N° prélèvement

Localisation Exacte

nio--- nº2

09:40

Analyse demandée

Piez1_vigi PH CDT SALM BACTE

Lieu de prélèvement

Décharge de Viggianello

Autre

20180305

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	PVC			
Profondeur	11.60	m		
Niveau d'eau statique	3.80	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	4.20	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.4	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	878	μS/cm		NFEN27888
Résistivité surplace	1139	ohm.cm		CALCUL
Analyses bactériologiques.				
Coliformes totaux / 100 ml	14	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	<15	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	30	NPP/100ml		NFENISO7899-1
Salmonella spp.	Absence	/5L		NFISO19250

Dossier n°: SARL_LANFR-180228-1026

Echantillon n°:20180228-05604

Produit: Eaux environnement.

Client: 51064

Bulletin n° NetClient Page: 2 sur 1

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire Directeur

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80

(Fax) (eax)

Ajaccio, le

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180228-1029

Echantillon n°:20180228-05609 Produit: Eaux environnement.

Client: 51067

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

18 Avril 2018

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 28/02/2018 Nature échantillon Eau environnement

Date de prélèvement 28/02/2018 Heure de réception 13:59

Heure de prélèvement 11:50 Motif de la visite Auto surveillance

FOR-Le laboratoire (FO) PPC Prélevé par Lieu/N° prélèvement **FORAGE**

Localisation Exacte Analyse demandée Bactério Salm CDT et PH sur place

Décharge de Viggianello Lieu de prélèvement Autre 20180305

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.5	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1659	μS/cm		NFEN27888
Analyses bactériologiques.				
Coliformes totaux / 100 ml	Non détecté	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	<15	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	<15	NPP/100ml		NFENISO7899-1
Salmonella spp.	Absence	/5L		NFISO19250
•				
				Page 1

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO
(a): 04.95.29.14.80 (b): 04.95.29.14.57 (Fax)

SIRET : 200 076 958 00020 : Ida2a@corsedusud.fr

Dossier n°: SARL_LANFR-180328-1522

Echantillon n°:20180328-08336 **Produit:** Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Ajaccio, le

Destinataire:

SARL LANFRANCHI T.P.

06 Avril 2018

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 28/03/2018 Nature échantillon Eau environnement

Date de prélèvement 28/03/2018 Heure de réception 12:13

Heure de prélèvement 09:10 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement N°50091

Localisation Exacte Piezo nº 1 Analyse demandée Piez1_vigi PH CDT

Lieu de prélèvement Décharge de Viggianello Autre 20180403

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre			_	
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	12.20	m		
Niveau d'eau statique	2.60	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Oui			
Niveau d'eau dynamique	3.30	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.5	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1529	μS/cm		NFEN27888
Résistivité surplace	654	ohm.cm		CALCUL
'				

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (a): 04.95.29.14.57

Ajaccio, le

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180328-1522

Echantillon n°:20180328-08337 Produit: Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

06 Avril 2018

20110

Date de réception 28/03/2018 Nature échantillon Eau environnement

Date de prélèvement 28/03/2018 Heure de réception 12:13

Heure de prélèvement 10:20 Motif de la visite Auto surveillance

TRI-le laboratoire (TRI) Prélevé par Lieu/N° prélèvement N°50093

Localisation Exacte Piezo nº 2 Analyse demandée Piez1_vigi PH CDT

Lieu de prélèvement Décharge de Viggianello Autre 20180403

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	9.10	m		
Niveau d'eau statique	1.50	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	10	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	3.30	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.9	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	2570	μS/cm		NFEN27888
Résistivité surplace	389	ohm.cm		CALCUL

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (a): 04.95.29.14.57

Ajaccio, le

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180328-1522

Echantillon n°:20180328-08335 Produit: Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

06 Avril 2018

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 28/03/2018 Nature échantillon Eau environnement

Date de prélèvement 28/03/2018 Heure de réception 12:12

Heure de prélèvement 09:40 Motif de la visite Auto surveillance

TRI-le laboratoire (TRI) Prélevé par Lieu/N° prélèvement N°50092

Localisation Exacte Piezo nº 3 Analyse demandée Piez1_vigi PH CDT

Lieu de prélèvement Décharge de Viggianello Autre 20180403

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	11.60	m		
Niveau d'eau statique	3.60	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Oui	_		
Niveau d'eau dynamique	4.40	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.5	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	836	μS/cm		NFEN27888
Résistivité surplace	1196	ohm.cm		CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (a): 04.95.29.14.57

Ajaccio, le

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180409-1689

Echantillon n°:20180409-09540 Produit: Eaux environnement.

Client: 50100

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

18 Avril 2018

20110

Date de réception 09/04/2018 Nature échantillon Eau environnement

Date de prélèvement 09/04/2018 Heure de réception 11:32

Heure de prélèvement 10:10 Motif de la visite Auto surveillance

ECO- le laboratoire (ECO) Prélevé par Lieu/N° prélèvement **FORAGE**

Localisation Exacte Analyse demandée CDT et PH sur place

Lieu de prélèvement Décharge de Viggianello Autre 20180409

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place. pH mesuré sur place à T° de l'eau Conductivité mesurée sur place à 25°C Résistivité surplace	6.8 1667 600	Unité pH µS/cm ohm.cm		NFENISO10523 NFEN27888 CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (eax)

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180425-2072

Echantillon n°:20180425-12105 Produit: Eaux environnement.

Client: 50135

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

02 Mai 2018

20110

Date de réception 25/04/2018 Nature échantillon Eau environnement

Date de prélèvement 25/04/2018 Heure de réception 12:13

Heure de prélèvement 08:30 Motif de la visite Auto surveillance

TRI-le laboratoire (TRI) Prélevé par Lieu/N° prélèvement

Localisation Exacte Piezo nº 1 Analyse demandée Piez3_vigi PH CDT RST

Lieu de prélèvement Décharge de Viggianello Autre 20180426

Observations

0.00			
0.00			
0.80	m		
100.00	/mm		
métalliques			
12.20	m		
2.70	m		
suffisant.	_		
Par pompage.	_		
20	mn		
Oui	_		
2.30	m		
6.3	Unité pH		NFENISO10523
1626	μS/cm		NFEN27888
615	ohm.cm		CALCUL
			,
	métalliques 12.20 2.70 suffisant. Par pompage. 20 Oui 2.30 6.3 1626	100.00 /mm métalliques 12.20 m 2.70 m suffisant. Par pompage. 20 mn Oui 2.30 m 6.3 Unité pH μS/cm	100.00 /mm métalliques 12.20 m 2.70 m suffisant. Par pompage. 20 mn Oui _ 2.30 m 6.3 Unité pH 1626 μS/cm

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 | Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180425-2072

Echantillon n°:20180425-12106 **Produit:** Eaux environnement.

Client: 50137

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

02 Mai 2018

20110

Date de réception 25/04/2018 Nature échantillon Eau environnement

Date de prélèvement 25/04/2018 Heure de réception 12:13

Heure de prélèvement 10:30 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement

Localisation Exacte Piezo n° 2 Analyse demandée Piez3_vigi PH CDT RST

Lieu de prélèvement Décharge de Viggianello Autre 20180426

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	9.10	m		
Niveau d'eau statique	1.50	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	10	mn		
Purge total du piézomètre	Oui	_		
Niveau d'eau dynamique	2.80	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.7	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	2670	μS/cm		NFEN27888
Résistivité surplace	375	ohm.cm		CALCUL

Page

1

U

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 | Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180425-2072

Echantillon n°:20180425-12104 **Produit:** Eaux environnement.

Client: 50136

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

02 Mai 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 25/04/2018 Nature échantillon Eau environnement

Date de prélèvement 25/04/2018 Heure de réception 12:13

Heure de prélèvement 08:55 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement

Localisation Exacte Piezo n° 3 Analyse demandée Piez3_vigi PH CDT RST

Lieu de prélèvement Décharge de Viggianello Autre 20180426

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	11.60	m		
Niveau d'eau statique	4.60	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Oui	_		
Niveau d'eau dynamique	4.20	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.3	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	755	μS/cm		NFEN27888
Résistivité surplace	1325	ohm.cm		CALCUL
				[

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80

(Fax) (eax)

Ajaccio, le

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180425-2071

Echantillon n°:20180425-12103 Produit: Eaux environnement.

Client: 50138

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

02 Mai 2018

20110

Date de réception 25/04/2018 Nature échantillon Eau environnement

Date de prélèvement 25/04/2018 Heure de réception 12:11

Heure de prélèvement 09:30 Motif de la visite Auto surveillance

TRI-le laboratoire (TRI) Prélevé par Lieu/N° prélèvement **FORAGE**

Localisation Exacte Analyse demandée RST CDT et PH sur place

Décharge de Viggianello Lieu de prélèvement Autre 20180426

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place. pH mesuré sur place à T° de l'eau Conductivité mesurée sur place à 25°C	6.4 1685	Unité pH μS/cm		NFENISO10523 NFEN27888

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO
(a): 04.95.29.14.80 (b): 04.95.29.14.57 (Fax)

SIRET : 200 076 958 00020 ② : lda2a@corsedusud.fr

Dossier n°: SARL LANFR-180523-2462

Echantillon n°:20180523-14842 **Produit:** Eaux environnement.

Client: 52075

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

01 Juin 2018

20110

Date de réception 23/05/2018 Nature échantillon Eau environnement

Date de prélèvement 23/05/2018 Heure de réception 13:12

Heure de prélèvement 08:30 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement PIEZO N°1

Localisation Exacte Piezo n° 1 Analyse demandée Piez1_vigi
Lieu de prélèvement Décharge de Viggianello Autre 20180524

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	/m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	12.20	/m		
Niveau d'eau statique	2.70	/m		
Volume d'eau :	suffisant.			
Purge :	Par pompage.			
Temps de pompage en min	20	/mn		
Purge total du piézomètre	Oui			
Niveau d'eau dynamique	3.40	/m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.2	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1571	μS/cm		NFEN27888
Résistivité surplace	637	ohm.cm		CALCUL
·				

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 : Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180523-2462

Echantillon n°:20180523-14843 **Produit:** Eaux environnement.

Client: 52077

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

01 Juin 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 23/05/2018 Nature échantillon Eau environnement

Date de prélèvement 23/05/2018 Heure de réception 13:12

Heure de prélèvement 09:20 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement PIEZO N°2 Localisation Exacte Piezo n° 2 Analyse demandée Piez1_vigi

Lieu de prélèvement Décharge de Viggianello Autre 20180524

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	/m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	9.10	/m		
Niveau d'eau statique	1.50	/m		
Volume d'eau :	suffisant.			
Purge :	Par pompage.			
Temps de pompage en min	0	/mn		
Purge total du piézomètre	Oui			
Niveau d'eau dynamique	2.90	/m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.4	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1014	μS/cm		NFEN27888
Résistivité surplace	986	ohm.cm		CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 | Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180523-2462

Echantillon n°:20180523-14844 **Produit:** Eaux environnement.

Client: 52076

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

01 Juin 2018

20110

Date de réception 23/05/2018 Nature échantillon Eau environnement

Date de prélèvement 23/05/2018 Heure de réception 13:12

Heure de prélèvement 09:00 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement PIEZO N°3

Localisation Exacte Piezo n° 3 Analyse demandée Piezo 1 vigi

Lieu de prélèvement Décharge de Viggianello Autre 20180524

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	/m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	11.60	/m		
Niveau d'eau statique	4.70	/m		
Volume d'eau :	suffisant.			
Purge :	Par pompage.			
Temps de pompage en min	0	/mn		
Purge total du piézomètre	Oui			
Niveau d'eau dynamique	4.80	/m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.4	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	929	μS/cm		NFEN27888
Résistivité surplace	1076	ohm.cm		CALCUL
·				

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80

(Fax) (a): 04.95.29.14.57

Ajaccio, le

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180523-2460

Echantillon n°:20180523-14837 Produit: Eaux environnement.

Client: 52079

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

01 Juin 2018

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 23/05/2018 Nature échantillon Eau environnement

Date de prélèvement 23/05/2018 Heure de réception 13:07

Heure de prélèvement 10:00 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement **FORAGE**

Localisation Exacte **FORAGE** Analyse demandée RST CDT et PH sur place

Lieu de prélèvement Décharge de Viggianello Autre

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.4	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1663	μS/cm		NFEN27888
Résistivité surplace	601	ohm.cm		CALCUL
Paramètres physico-chimiques.				
Conductivité (manuelle)	En cours	μS/cm		NFEN27888
Température de la mesure de la conductivité	En cours	°C		M_INTERNE

Page

1

O | SIRET : 200 076 958 0 @: Ida2a@corsedusud.fr

17 Juillet 2018

Dossier n°: SARL LANFR-180626-3312

Echantillon n°:20180626-19910 **Produit**: Eaux environnement.

Client: N°54602

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 26/06/2018 Nature échantillon Eau environnement

Date de prélèvement 26/06/2018 Heure de réception 11:05

Heure de prélèvement 07:35 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement

Localisation Exacte Piezo n° 1 Analyse demandée PIEZ1 VIGI Lieu de prélèvement Décharge de Viggianello Autre 20180628

Observations

RESULTAT	UNITE	limite	METHODES
0.80	m		
100.00	/mm		
métalliques			
12.20	m		
2.80	m		
suffisant.	_		
Par pompage.	_		
20	mn		
Oui			
3.70	m		
6.5	Unité pH		NFENISO10523
1412	•		NFEN27888
708	ohm.cm		CALCUL
	0.80 100.00 métalliques 12.20 2.80 suffisant. Par pompage. 20 Oui 3.70	0.80 m 100.00 /mm métalliques 12.20 m 2.80 m suffisant. Par pompage. 20 mn Oui 3.70 m 6.5 Unité pH 1412 μS/cm	0.80 m 100.00 /mm métalliques 12.20 m 2.80 m suffisant Par pompage 20 mn Oui _ 3.70 m 6.5 Unité pH 1412 μS/cm

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80 (Fax) (a): 04.95.29.14.57

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180626-3312

Echantillon n°:20180626-19911 Produit: Eaux environnement.

Client: N°54604

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

26/06/2018

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

17 Juillet 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Nature échantillon Eau environnement

Date de prélèvement 26/06/2018 Heure de réception 11:05

Heure de prélèvement 08:40 Motif de la visite Auto surveillance

TRI-le laboratoire (TRI) Prélevé par Lieu/N° prélèvement

Localisation Exacte Piezo nº 2 Analyse demandée PIEZ1 VIG Lieu de prélèvement Décharge de Viggianello Autre 20180628

Observations

Date de réception

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	9.10	m		
Niveau d'eau statique	1.50	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	10	mn		
Purge total du piézomètre	Oui	_		
Niveau d'eau dynamique	3.70	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.8	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	3520	μS/cm		NFEN27888
Résistivité surplace	284	ohm.cm		CALCUL
•				

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 | Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180626-3312

Echantillon n°:20180626-19912 **Produit:** Eaux environnement.

Client: 54603

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Ajaccio, le

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

17 Juillet 2018

20110

Date de réception 26/06/2018 Nature échantillon Eau environnement

Date de prélèvement 26/06/2018 Heure de réception 11:06

Heure de prélèvement 08:10 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement

Localisation Exacte Piezo n° 3 Analyse demandée PIEZ1 VIG
Lieu de prélèvement Décharge de Viggianello Autre 20180628

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	11.60	m		
Niveau d'eau statique	5.00	m		
Volume d'eau :	suffisant.			
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Oui			
Niveau d'eau dynamique	5.60	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.7	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	693	μS/cm		NFEN27888
Résistivité surplace	1443	ohm.cm		CALCUL
riodictivite dulplace	1440	OTHITI.CITI		0/12002

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 (a): Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180626-3311

Echantillon n°:20180626-19909

Produit : Eau résiduaire, pluviale, lixiviat.

Client: 26/06/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

17 Juillet 2018

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 26/06/2018 Nature échantillon

Date de prélèvement 26/06/2018 Heure de réception 11:03

Heure de prélèvement 09:20 Motif de la visite autosurveillance

Prélevé par Le Laboratoire (TRI) N° de prélèvement/Lieu N°54607

Localisation exacte FORAGE Analyse de type PH CDT sur place

Point de Prelev./Station Viggianello Autre 20180627

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place. pH mesuré sur place à T° de l'eau Conductivité mesurée sur place à 25°C	6.6 1638	Unité pH µS/cm		NFENISO10523 NFEN27888

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

Page 1/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

IRH INGENIEUR CONSEIL **Monsieur Pierre BOYER** bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001

Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

Coordinateur de projet client : Clémence Brochard / ClemenceBrochard@eurofins.com / +33 3 88 02 15 89

N° Ech	Matrice		Référence échantillon
001	Eau chargée/Résiduaire	(EC)	Bassin Lixivat
002	Eau chargée/Résiduaire	(EC)	Eaux pluviales
003	Eau chargée/Résiduaire	(EC)	Drains
004	Eau chargée/Résiduaire	(EC)	Pz1 (9m) à gauche par rapport au portail
005	Eau chargée/Résiduaire	(EC)	Pz2 (12m) à droite par rapport au portail
006	Eau chargée/Résiduaire	(EC)	Pz3 (12m)
007	Eau chargée/Résiduaire	(EC)	Forage
800	Eau chargée/Résiduaire	(EC)	Aval rejet Ruisseau Rizzanese
009	Eau chargée/Résiduaire	(EC)	Amont rejet ruisseau Rizzanese
010	Eau chargée/Résiduaire	(EC)	Perméat osmoseur

Page 2/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 Date de réception : 19/07/2018

N° de rapport d'analyse : AR-18-LK-123004-01 Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

LS02M : Azote Nitrique / Nitrates (NO3)

N° Echantillon Référence client :	001 Bassin Lixivat	002 Eaux pluviales	003 Drains	gauche par rapport au	005 Pz2 (12m) à droite par rapport au	006 Pz3 (12m)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :	EC 17/07/2018 20/07/2018 13.4°C	EC 17/07/2018 20/07/2018 13.4°C	EC 17/07/2018 20/07/2018 13.4°C	portail EC 17/07/2018 19/07/2018 13.4°C	portail EC 17/07/2018 19/07/2018 13.4°C	EC 17/07/2018 19/07/2018 13.4°C

		Analys	es immédia	ates			
LS009 : Mesure du pH							
pH		# 8.6 ±0.43	# 8.8 ±0.44	# 8.0 ±0.40	# 6.3 ±0.32	# 6.8 ±0.34	# 6.4 ±0.32
Température de mesure du pH	°C	21.3	20.9	21.3	21.2	21.4	21.4
LS579 : Conductivité à 25°C							
Conductivité corrigée automatiquement à 25°C	μS/cm	# 35100	# 1270	# 2970	# 1500	# 3740	# 1040
Température de mesure de la conductivité	°C	21.2	20.8	21.1	21.0	21.3	21.3
LS424 : Résistivité	ohm.cm	28.5	787	337	668	267	962
LS486 : Potentiel d'oxydoréduction	m∨				308	321	320
LS010 : Matières en Suspension (MES) par filtration	mg/l	# 850 ±170	# 29 ±6	#42 ±8	# 3.0 ±0.60	# 5.3 ±1.06	# 3.9 ±0.78
		Indice	s de pollut	ion			
LS046 : Organo Halogénés	mg Cl/I		# 0.27 ±0.041	# 0.33 ±0.050	# 0.1 ±0.02	# 0.06 ±0.009	# 0.05 ±0.008

Nitrates	mg NO3/I		# 2.52 ±0.633		# 2.33 ±0.586		# 12.8 ±3.20		# 11.7 ±2.93		# 67.2 ±16.80		# 4.13 ±1.034
Azote nitrique	mg N-NO3/I		# 0.57 ±0.156		# 0.53 ±0.146		# 2.89 ±0.725		# 2.65 ±0.665		# 15.2 ±3.80		# 0.93 ±0.241
LS02X : Azote Nitreux / Nitrites (NO2)													
Nitrites	mg NO2/I		# 0.28 ±0.070		# 1.01 ±0.253		# 3.81 ±0.953		# 0.17 ±0.043		# 0.11 ±0.028		#<0.04
Azote nitreux	mg N-NO2/I		# 0.09 ±0.023		# 0.31 ±0.078		# 1.16 ±0.290		# 0.05 ±0.013		# 0.03 ±0.008		#<0.01
LS02J : Chlorures	mg/l	*	8240 ±1648					*	195 ±39	*	676 ±135	*	224 ±45
LS02U : Chrome VI	mg/l				# <0.01		# < 0.02						
LS03A: Sulfates (SO4)	mg SO4/I							*	204 ±51	*	495 ±124	*	47.9 ±11.97
LS03D : Orthophosphates (PO4)													
Orthophosphates (P)	mg P/I							*	<0.03	*	<0.03	*	< 0.03
Orthophosphate (PO4)	mg PO4/I							*	<0.10	*	<0.10	*	<0.10
LS461 : Demande chimique en	mg O2/I							*	<30	*	83 ±12	*	<30
Oxygène (DCO)													
LS18L : Demande Chimique en	mg/l	*	13000 ±650	*	200 ±10	*	300 ±15						
Oxygène (ST-DCO)	mg O2/I		1860 ±651		16 ±6		9 ±3		<3.00		4 ±1		<3.00
LS463 : Demande Biochimique en Oxygène (DBO5)	ing OZii		1000 ±631		10 ±6		9 ±3		<3.00		4 11		<3.00
LS467 : Carbone Organique Total	mg/l	*	5.8 ±0.58	*	42 ±4	*	76 ±8	*	7.6 ±0.76	*	19 ±2	*	<5.0
(COT)													
LS559 : Fluorures	mg/l			*	<0.5	*	0.51 ±0.071						

Page 3/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 Date de réception : 19/07/2018 N° de rapport d'analyse : AR-18-LK-123004-01

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001

Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

N° Echantillon		001		002		003		004		005		006
Référence client :		Bassin Lixivat		Eaux pluviales		Drains	9	Pz1 (9m) à gauche par rapport au portail	Pz2 (12m) à droite par rapport au portail			Pz3 (12m)
Matrice :		EC		EC		EC		EC		EC		EC
Date de prélèvement :		17/07/2018		17/07/2018		17/07/2018		17/07/2018	17/07/2018			17/07/2018
Date de début d'analyse :		20/07/2018	2	20/07/2018		20/07/2018		19/07/2018	19/07/2018			19/07/2018
Température de l'air de l'enceinte :		13.4°C		13.4°C		13.4°C		13.4°C		13.4°C		13.4°C
		Indice	S	de pollut	io	n						
LS007 : Azote Kjeldahl (NTK)	mg N/I	* 1920 ±384	*	11.6 ±2.32	*	67.8 ±13.56	*	<3.00	*	3.00 ±0.600	*	<3.00
LS572 : Azote ammoniacal												
Azote ammoniacal	mg N/I						*	<0.5	*	<0.5	*	<0.5
Ammonium	mg NH4/I						*	<0.6	*	<0.6	*	<0.6
LS480 : Indice phénol	µg/l		*	<10.0	*	<20.0	*	<10.0	*	<10.0	*	<10.0
LS478 : Cyanures aisément libérables	µg/l		*	<10	*	<10						
			M	étaux								
LS488 : Minéralisation acide nitrique avant analyse métaux			*	Fait	*	Fait	*	Fait	*	Fait	*	Fait
LS425 : Aluminium (AI)	mg/l		*	0.12 ±0.042	*	<0.10	*	<0.10	*	<0.10	*	0.10 ±0.035
LS428 : Arsenic (As)	mg/l		*	<0.01	*	<0.01						
LS433 : Cadmium (Cd)	mg/l						*	<0.01	*	<0.01	*	<0.01
LS434 : Calcium (Ca)	mg/l						*	68.3 ±11.61	*	197 ±33	*	37.0 ±6.29
LS435 : Chrome (Cr)	mg/l						*	<0.01	*	<0.01	*	<0.01
LS437 : Cuivre (Cu)	mg/l		*	<0.02	*	<0.02	*	<0.02	*	<0.02	*	<0.02
LS438 : Etain (Sn)	mg/l		*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05
LS439 : Fer (Fe)	mg/l		*	0.54 ±0.108	*	5.05 ±1.010	*	0.05 ±0.010	*	0.02 ±0.004	*	0.11 ±0.022
LS441 : Magnésium (Mg)	mg/l						*	78.0 ±8.58	*	147 ±16	*	32.7 ±3.60
LS442 : Manganèse (Mn)	mg/l		*	0.38 ±0.095	*	0.95 ±0.238	*	0.22 ±0.055	*	0.44 ±0.110	*	0.22 ±0.055
LS444 : Nickel (Ni)	mg/l		*	<0.01	*	0.01 ±0.002	*	<0.01	*	<0.01	*	<0.01
LK07G : Phosphore (P)	mg P/I		*	0.1 ±0.01	*	0.3 ±0.04	*	<0.1	*	<0.1	*	<0.1
LS446 : Plomb (Pb)	mg/l		*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01
LS447 : Potassium (K)	mg/l						*	3.79 ±0.531	*	44.2 ±6.19	*	2.68 ±0.375
LS459 : Zinc (Zn)	mg/l		*	<0.02	*	<0.02	*	<0.02	*	<0.02	*	<0.02
LS574 : Mercure (Hg)	µg/l		*	<0.5	*	<0.5	*	<0.5	*	<0.5	*	<0.5
		Hydrod	ar	bures to	ta	ux						
LSIHV : Indice Hydrocarbure Volatil (compris C5-C11)	µg/l		*	<30	*	<30	ľ					
LS578 : Indice Hydrocarbures (C10-C40)	mg/l		*	<0.50	*	<0.50						

Page 4/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

N° Echantillon	001	002	003	004	005	006
Référence client :	Bassin Lixivat	Eaux pluviales	Drains	Pz1 (9m) à gauche par rapport au portail	Pz2 (12m) à droite par rapport au portail	Pz3 (12m)
Matrice :	EC	EC	EC	EC	EC	EC
Date de prélèvement :	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Date de début d'analyse :	20/07/2018	20/07/2018	20/07/2018	19/07/2018	19/07/2018	19/07/2018
Température de l'air de l'enceinte :	13.4°C	13.4°C	13.4°C	13.4°C	13.4°C	13.4°C

	Hydrocarbu	res Aroma	tiques Pol	ycycliques	(H.	APs)				
LS8RK : Fluoranthène	μg/l				*	<0.05	*	<0.05	*	<0.05
LS8RT : Naphtalène	μg/l				*	<0.05	*	<0.05	*	<0.05
LS8RJ : Anthracène	μg/l				*	<0.05	*	<0.05	*	<0.05
LS8RL : Pyrène	μg/l				*	<0.05	*	<0.05	*	<0.05
LS8RP : Benzo(b)fluoranthène	μg/l				*	<0.05	*	<0.05	*	<0.05
LS8RQ : Benzo(k)fluoranthène	μg/l				*	<0.05	*	<0.05	*	<0.05
LS8RG : Benzo(a)pyrène	µg/l				*	<0.05	*	<0.05	*	<0.05
LS8RW : Benzo(ghi)Pérylène	µg/l				*	<0.05	*	<0.05	*	<0.05
LS8RR : Indeno (1,2,3-cd) Pyrène	µg/l				*	<0.05	*	<0.05	*	<0.05
LS8RH : Fluorène	µg/l				*	<0.05	*	<0.05	*	<0.05
LS8RI : Phénanthrène	µg/l				*	<0.05	*	<0.05	*	<0.05
LS8RM : Benzo-(a)-anthracène	µg/l				*	<0.05	*	<0.05	*	<0.05
LS8RN : Chrysène	μg/l				*	<0.05	*	<0.05	*	<0.05
LS8RS : Dibenzo(a,h)anthracène	µg/l				*	<0.05	*	<0.05	*	<0.05
LS8RU : Acénaphthylène	µg/l				*	<0.05	*	<0.05	*	<0.05
LS8RV : Acénaphtène	μg/l				*	<0.05	*	<0.05	*	<0.05
LS8RF : Somme des HAP	μg/l					<0.8		<0.8		<0.8
	ь	alveblara	hinhányloc	(DCDc)						

LSORF . SUITINE des HAP	pgri					~0.0		~0.0		~0.0
	P	olychloro	biphényles	(PCBs)						
LS596 : PCB congénères régle composés)	ementaires (7									
PCB 28	μg/l				*	<0.02	*	<0.02	*	< 0.02
PCB 52	μg/l				*	<0.02	*	<0.02	*	<0.02
PCB 101	μg/l				*	<0.02	*	<0.02	*	<0.02
PCB 138	μg/l				*	< 0.02	*	< 0.02	*	< 0.02
PCB 153	μg/l				*	<0.02	*	< 0.02	*	< 0.02
PCB 180	μg/l				*	<0.02	*	<0.02	*	<0.02
PCB 118	μg/l				*	< 0.02	*	< 0.02	*	< 0.02
SOMME PCB (7)	μg/l					<0.14		<0.14		<0.14
		Comp	neáe Volat	ile						

		Comp	oses voiat	IIS						
LS1JW : Ethylbenzène	μg/l				*	<1.00	*	<1.00	*	<1.00
LS1KA: Toluène	μg/l				*	<1.00	*	<1.00	*	<1.00

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971 ACCREDITATION N° 1- 1488 Site de saverne ortée disponible sur www.cofrac.fr

Page 5/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

N° Echantillon Référence client :	001 Bassin Lixivat	002 Eaux pluviales	003 Drains	004 Pz1 (9m) à gauche par rapport au portail	005 Pz2 (12m) à droite par rapport au portail	006 Pz3 (12m)			
Matrice :	EC	EC	EC	EC	EC	EC			
Date de prélèvement :	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018	17/07/2018			
Date de début d'analyse :	20/07/2018	20/07/2018	20/07/2018	19/07/2018	19/07/2018	19/07/2018			
Température de l'air de l'enceinte :	13.4°C	13.4°C	13.4°C	13.4°C	13.4°C	13.4°C			
Composés Volatils									

	(Composés Volati	s					
LS1KE : m+p-Xylène	μg/l		*	<1.00	*	<1.00	*	<1.00
LS1KF : o-Xylène	μg/l		*	<1.00	*	<1.00	*	<1.00
LS1L1 : Benzène	μg/l		*	< 0.50	*	< 0.50	*	< 0.50

Page 6/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT

Commune: Propiano 1

N° Echantillon	007	008	009	010
Référence client :	Forage	Aval rejet Ruisseau Rizzanese	Amont rejet ruisseau Rizzanese	Perméat osmoseur
Matrice :	EC	EC	EC	EC
Date de prélèvement :	17/07/2018	17/07/2018	17/07/2018	17/07/2018
Date de début d'analyse :	19/07/2018	20/07/2018	20/07/2018	19/07/2018
Température de l'air de l'enceinte :	13.4°C	13.4°C	13.4°C	13.4°C

	Analyses immédiates									
LS009 : Mesure du pH										
pH		# 6.7 ±0.34	# 7.2 ±0.36	# 7.4 ±0.37						
Température de mesure du pH	°C	21.0	21.3	20.6						
LS579 : Conductivité à 25°C										
Conductivité corrigée automatiquement à 25°C	μS/cm	# 1650	# 224	# 217	# 1590					
Température de mesure de la conductivité	°C	20.9	21.2	20.4	19.9					
LS424 : Résistivité	ohm.cm	608	4460	4610	631					
LS486 : Potentiel d'oxydoréduction	mV	305								
LS010 : Matières en Suspension (MES) par filtration	mg/l	# 2.4 ±0.48			# <2.0					

MES) par filtration									
			Indice	S	de pollut	io	n		
.S046 : Organo Halogénés Adsorbables (AOX) .S02M : Azote Nitrique / Nitrates (NO3)	mg Cl/l		# 0.09 ±0.014	Γ				Г	# 0.06 ±0.009
Nitrates	mg NO3/I		# 27.3 ±6.83		# 1.25 ±0.319		# 1.43 ±0.363		# <1.00
Azote nitrique	mg N-NO3/I		# 6.16 ±1.541		# 0.28 ±0.094		# 0.32 ±0.101		#<0.22
LS02X : Azote Nitreux / Nitrites (NO2)									
Nitrites	mg NO2/I		# < 0.04		#<0.04		#<0.04		#0.38 ±0.095
Azote nitreux	mg N-NO2/I		# < 0.01		#<0.01		#<0.01		# 0.12 ±0.030
LS02J : Chlorures	mg/l	*	239 ±48	*	29.7 ±5.94	*	29.4 ±5.88		
LS03A : Sulfates (SO4)	mg SO4/I	*	244 ±61	*	8.21 ±2.053	*	14.2 ±3.55		
LS03D : Orthophosphates (PO4)									
Orthophosphates (P)	mg P/I	*	<0.03						
Orthophosphate (PO4)	mg PO4/I	*	<0.10						
LS461 : Demande chimique en Oxygène (DCO)	mg O2/I	*	<30	*	<30	*	<30	*	<30
LS463 : Demande Biochimique en Oxygène (DBO5)	mg O2/I	*	<3.00	*	<3.00	*	<3.00	*	<3.00
LS467 : Carbone Organique Total (COT)	mg/l	*	7.1 ±0.71	*	2.1 ±0.21	*	2.3 ±0.23		
LS559 : Fluorures	mg/l			*	<0.5	*	<0.5	*	<0.5
LS007 : Azote Kjeldahl (NTK)	mg N/I	*	<3.00	*	<3.00	*	<3.00	*	<3.00
LS572 : Azote ammoniacal									
Azote ammoniacal	mg N/I	*	0.7 ±0.04						
Ammonium	mg NH4/I	*	0.9 ±0.05						

Page 7/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 N° de rapport d'analyse : AR-18-LK-123004-01 Date de réception : 19/07/2018

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001

Nom client: SARL LANFRANCH ENVIRONNEMENT

Commune : Propiano 1										
N° Echantillon			007		800		009		010	
Référence client :			Forage		Aval rejet Ruisseau Rizzanese	,	Amont rejet ruisseau Rizzanese		Perméat smoseur	
Matrice :			EC	Г	EC		EC		EC	
Date de prélèvement :			17/07/2018		17/07/2018		17/07/2018	1	7/07/2018	
Date de début d'analyse :		1	19/07/2018	2	20/07/2018		20/07/2018	1	9/07/2018	
Température de l'air de l'enceinte :			13.4°C		13.4°C		13.4°C		13.4°C	
			Indice	S	de pollut	tio	n			
LS480 : Indice phénol	μg/l	*	<10.0	*	<10.0	*	<10.0	*	<10.0	
LS478 : Cyanures aisément	μg/l			*	<10	*	<10	*	<10	
ibérables				L	-40		40			
.S479 : Cyanures totaux	µg/l			*	<10	*	<10			
Métaux										
S488 : Minéralisation acide		*	Fait	*	Fait	*	Fait	*	Fait	
nitrique avant analyse métaux LS425 : Aluminium (AI)	mg/l	*	<0.10					*	<0.10	
.S428 : Arsenic (As)	mg/l		0.10					*	<0.01	
.S433 : Cadmium (Cd)	mg/l	*	<0.01					*	<0.01	
.S434 : Calcium (Ca)	mg/l	*	82.9 ±14.09							
.S435 : Chrome (Cr)	mg/l	*	0.02 ±0.005					*	<0.01	
.S437 : Cuivre (Cu)	mg/l	*	<0.02					*	<0.02	
.S438 : Etain (Sn)	mg/l	*	<0.05					*	<0.05	
LS439 : Fer (Fe)	mg/l	*	0.05 ±0.010	*	0.11 ±0.022	*	0.16 ±0.032	*	<0.02	
LS441 : Magnésium (Mg)	mg/l	*	65.3 ±7.18							
LS442 : Manganèse (Mn)	mg/l	*	0.29 ±0.073					*	<0.01	
S444 : Nickel (Ni)	mg/l	*	<0.01					*	<0.01	
LK07G : Phosphore (P)	mg P/I	*	<0.1	*	<0.1	*	<0.1	*	<0.1	
.S446 : Plomb (Pb)	mg/l	*	<0.01					*	<0.01	
S447 : Potassium (K)	mg/l	*	3.51 ±0.491							
LS459 : Zinc (Zn)	mg/l	*	0.02 ±0.004					*	<0.02	
S574 : Mercure (Hg)	μg/l	*	<0.5					*	<0.5	
			Hydroc	ar	bures to	ta	ux			
SIHV : Indice Hydrocarbure Volatil	µg/l	T		Г		1		*	<30	
compris C5-C11) .S578 : Indice Hydrocarbures	mg/l							*	<0.50	
(C10-C40)	drocarb	HIP	oe Aroma	ati	auge Po	he	cycliques	/1	IAPe)	
		ur		all	ques Po	ıy	cycliques	(1	IAF5)	
LS8RK : Fluoranthène	μg/l	*	<0.05							
LS8RT : Naphtalène	µg/l	*	<0.05							
.S8RJ : Anthracène	µg/l	*	<0.05							

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

ACCREDITATION N° 1- 1488 Site de saverne Portée disponible sur www.cofrac.fr

Page 8/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 Date de réception : 19/07/2018 N° de rapport d'analyse : AR-18-LK-123004-01

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT

Commune: Propiano 1

Commune . Propiano 1							
N° Echantillon			007	008	009	010	
Référence client :			Forage	Aval rejet Ruisseau Rizzanese	Amont rejet ruisseau Rizzanese	Perméat osmoseur	
Matrice :			EC	EC	EC	EC	
Date de prélèvement :			7/07/2018	17/07/2018	17/07/2018	17/07/2018	
Date de début d'analyse :		19	9/07/2018	20/07/2018	20/07/2018	19/07/2018	
Température de l'air de l'enceinte :			13.4°C	13.4°C	13.4°C	13.4°C	
Ну	drocarb	ure	s Aroma	itiques Pol	ycycliques	(HAPs)	
LS8RL : Pyrène	µg/l	*	<0.05				
LS8RP: Benzo(b)fluoranthène	μg/l	*	<0.05				
LS8RQ: Benzo(k)fluoranthène	µg/l	*	<0.05				
LS8RG : Benzo(a)pyrène	μg/l	*	<0.05				
LS8RW : Benzo(ghi)Pérylène	μg/l	*	<0.05				
LS8RR : Indeno (1,2,3-cd) Pyrène	µg/l	*	<0.05				
LS8RH : Fluorène	µg/l	*	<0.05				
LS8RI : Phénanthrène	µg/l	*	<0.05				
LS8RM : Benzo-(a)-anthracène	µg/l	*	<0.05				
LS8RN : Chrysène	µg/l	*	<0.05				
LS8RS : Dibenzo(a,h)anthracène	µg/l	*	<0.05				
LS8RU : Acénaphthylène	µg/l	*	<0.05				
LS8RV : Acénaphtène	μg/l	*	<0.05				
LS8RF : Somme des HAP	µg/l		<0.8				
		Pol	ychlorol	biphényles	(PCBs)		
LS596 : PCB congénères réglementair	es (7						
composés) PCB 28	μg/l	*	<0.02				
PCB 52	µg/l	*	<0.02				
PCB 101	µg/l	*	<0.02				
PCB 138	μg/l	*	<0.02				
PCB 153	µg/l	*	<0.02				
PCB 180	µg/l	*	<0.02				
PCB 118	µg/l	*	<0.02				
SOMME PCB (7)	µg/l		<0.14				
			Comp	osés Volat	ils		
LS1JW : Ethylbenzène	μg/l	*	<1.00				
LS1KA: Toluène	µg/l	*	<1.00				
LS1KE: m+p-Xylène	μg/l	*	<1.00				
LS1KF : o-Xylène	μg/l	*	<1.00				
LS1L1 : Benzène	µg/l	*	<0.50				

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SA\/

D : détecté / ND : non détecté

Page 9/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 30/08/2018 Dossier N°: 18E081135 Date de réception : 19/07/2018 N° de rapport d'analyse : AR-18-LK-123004-01

Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001

Nom client: SARL LANFRANCH ENVIRONNEMENT Commune: Propiano 1

Observations	N° Ech	Réf client
Flux continu : l'analyse a été réalisée sur l'échantillon filtré à 0.45 µm.	(003)	Drains
L'analyse de DBO5 a été réalisée sur une fraction d'échantillon congelée à réception.	(001) (002) (003) (004) (005) (006) (007) (008) (009) (010)	Bassin Lixivat / Eaux pluviales / Drains / Pz1 (9m) à gauche par rapport au portail / Pz2 (12m) à droite par rapport au portail / Pz3 (12m) / Forage / Aval rejet Ruisseau Rizzanese / Amont rejet ruisseau Rizzanese / Perméat osmoseur /
Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre demière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation. L'échantillon a néanmoins été conservé dans les meilleures conditions de stockage.	(001) (002) (003) (004) (005) (006) (007) (008) (009) (010)	Bassin Lixivat / Eaux pluviales / Drains / P21 (9m) à gauche par rapport au portail / P22 (12m) à droite par rapport au portail / P23 (12m) / Forage / Aval rejet Ruisseau Rizzanese / Amont rejet ruisseau Rizzanese / Perméat osmoseur /
Spectrophotométrie visible : l'analyse a été réalisée sur l'échantillon filtré à 0.45µm.	(001) (002) (003) (004) (005) (006) (007) (008) (009) (010)	Bassin Lixivat / Eaux pluviales / Drains / Pz1 (9m) à gauche par rapport au portail / Pz2 (12m) à droite par rapport au portail / Pz3 (12m) / Forage / Aval rejet Ruisseau Rizzanese / Amont rejet ruisseau Rizzanese / Perméat osmoseur /

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 14 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des prélèvements et des analyses terrains et/ou des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Page 10/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 18E081135

N° de rapport d'analyse : AR-18-LK-123004-01 Référence Dossier : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1

Version du : 30/08/2018 Date de réception : 19/07/2018

Clémence Brochard Coordinateur Projets Clients

Page 11/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

N° de rapport d'analyse :AR-18-LK-123004-01 Dossier N°: 18E081135

Emetteur: Commande EOL:

Nom projet : Référence commande :

Eau	Eau chargée/Résiduaire										
Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :						
LK07G	Phosphore (P)	ICP/AES - NF EN ISO15587-2 / NF EN ISO11885	0.1	mg/l	Eurofins Analyse pour l'Environnement France						
LS007	Azote Kjeldahl (NTK)	Volumétrie - NF EN 25663	3	mg N/I	Trance						
LS009	Mesure du pH pH	Potentiométrie - NF EN ISO 10523									
	Température de mesure du pH			°C							
LS010	Matières en Suspension (MES) par filtration	Gravimétrie [Filtre Millipore AP40] - NF EN 872	2	mg/l	1						
LS02J	Chlorures	Spectrophotométrie (UV/VIS) [Spectrophotométrie visible automatisée] - NF ISO 15923-1	1	mg/l]						
LS02M	Azote Nitrique / Nitrates (NO3) Nitrates	Spectrophotométrie (UV/VIS) - NF ISO 15923-1		NO21							
	Azote nitrique		1 0.22	mg NO3/I mg N-NO3/I							
LS02U	Chrome VI	Construction of BURDEN IS and a state of the	0.22		4						
L3020	Chrome VI	Spectrophotométrie (UV/VIS) [Spectrophotométrie visible automatisée] - Méthode interne	0.01	mg/l							
LS02X	Azote Nitreux / Nitrites (NO2)	Spectrophotométrie (UV/VIS) - NF ISO 15923-1			1						
	Nitrites		0.04	mg NO2/I							
	Azote nitreux		0.01	mg N-NO2/I	1						
LS03A	Sulfates (SO4)	Spectrophotométrie (UV/VIS) [Spectrophotométrie visible automatisée] - NF ISO 15923-1	5	mg SO4/I							
LS03D	Orthophosphates (PO4)	Spectrophotométrie (UV/VIS) [Spectrophotométrie visible automatisée] - NF ISO 15923-1									
	Orthophosphates (P)	Tible distinuises, in its research	0.03	mg P/I							
	Orthophosphate (PO4)		0.1	mg PO4/I							
LS046	Organo Halogénés Adsorbables (AOX)	Coulométrie [Adsorption, Combustion] - Méthode interne	0.05	mg/l	1						
LS18L	Demande Chimique en Oxygène (ST-DCO)	Spectrophotométrie [Détection photométrique - Méthode à petite échelle en tube fermé] - ISO 15705	10	mg O2/I]						
LS1JW	Ethylbenzène	HS - GC/MS - NF EN ISO 10301 (COHV)/ NF ISO 11423-1 (BTEX)	1	µgЛ	1						
LS1KA	Toluène	- ` ´ ´	1	µд∕І	1						
LS1KE	m+p-Xylène	-	1	μg/l	1						
LS1KF	o-Xylène		1	µgЛ]						
LS1L1	Benzène		0.5	μg/l]						
LS424	Résistivité	Calcul - Calcul		ohm.cm							
LS425	Aluminium (AI)	ICP/AES - NF EN ISO15587-2 / NF EN ISO11885	0.1	mg/l							
LS428	Arsenic (As)		0.01	mg/l							
LS433	Cadmium (Cd)		0.01	mg/l							
LS434	Calcium (Ca)		2	mg/l							
LS435	Chrome (Cr)		0.01	mg/l							
LS437	Cuivre (Cu)	_ [0.02	mg/l	1						
LS438	Etain (Sn)	_ [0.05	mg/l]						
LS439	Fer (Fe)	_ [0.02	mg/l]						
LS441	Magnésium (Mg)	_ [1	mg/l]						
LS442	Manganèse (Mn)	_ [0.01	mg/l]						
LS444	Nickel (Ni)	_ [0.01	mg/l	1						
LS446	Plomb (Pb)	_ [0.01	mg/l	1						
LS447	Potassium (K)	_ [0.2	mg/l]						
LS459	Zinc (Zn)	1	0.02	mg/l							

Eau chargée/Résiduaire

Page 12/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT **FRANCE SAS**

Annexe technique

N° de rapport d'analyse :AR-18-LK-123004-01 Dossier N°: 18E081135

Emetteur: Commande EOL:

Nom projet : Référence commande :

3						
	Code	Analyse	Principe et référence de la méthode	LQI	Unité	Pre
	LS461	Demande chimique en Oxygène (DCO)	Volumétrie - NF T 90-101	30	mg O2/I	

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS461	Demande chimique en Oxygène (DCO)	Volumétrie - NF T 90-101	30	mg O2/I	de:
LS463	Demande Biochimique en Oxygène (DBO5)	Electrométrie [Electrochimie] - NF EN 1899-1	3	mg O2/I	1
LS467	Carbone Organique Total (COT)	Spectrophotométrie (IR) [Oxydation à chaud en milieu acide] - NF EN 1484	0.5	mg/l	1
LS478	Cyanures aisément libérables	Spectroscopie (FIA) [Flux continu] - NF EN ISO 14403	10	μg/l	
LS479	Cyanures totaux	1	10	μg/l	1
LS480	Indice phénol	Flux continu [Flux Continu] - NF EN ISO 14402	10	μg/l]
LS486	Potentiel d'oxydoréduction	Potentiométrie [Mesure par électrode (Valeur non corrigée par rapport à l'électrode hydrogène)] - Méthode interne		mV	
LS488	Minéralisation acide nitrique avant analyse métaux	Digestion acide - NF EN ISO 15587-2			1
LS559	Fluorures	Potentiométrie - NF T 90-004	0.5	mg/l	1
LS572	Azote ammoniacal	Volumétrie - NF T 90-015-1			1
	Azote ammoniacal		0.5	mg N/I	
	Ammonium		0.6	mg NH4/I	
LS574	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) [Minéralisation à l'acide nitrique] - NF EN ISO 17852	0.5	μдЛ]
LS578	Indice Hydrocarbures (C10-C40)	GC/FID [Extraction Liquide / Liquide sur prise d'essai réduite] - NF EN ISO 9377-2	0.5	mg/l	
LS579	Conductivité à 25°C	Potentiométrie [Méthode à la sonde] - NF EN 27888			
	Conductivité corrigée automatiquement à 25°C		15	μS/cm	
	Température de mesure de la conductivité			°C	
LS596	PCB congénères réglementaires (7 composés)	GC/MS/MS [Extraction Liquide / Liquide] - NF EN ISO 6468			1
	PCB 28		0.02	µg/l	
	PCB 52		0.02	µg/l	
	PCB 101		0.02	μgЛ	
	PCB 138		0.02	μgЛ	
	PCB 153		0.02	µgЛ	
	PCB 180		0.02	µgЛ	
	PCB 118		0.02	µgЛ	
	SOMME PCB (7)			μgЛ	
LS8RF	Somme des HAP	GC/MS/MS [Extraction Liquide / Liquide] - NF EN ISO 28540		µgЛ	1
LS8RG	Benzo(a)pyrène	1	0.05	µg/l	1
LS8RH	Fluorène	1	0.05	μgЛ	1
LS8RI	Phénanthrène	1	0.05	µgЛ	1
LS8RJ	Anthracène	1	0.05	µgЛ	1
LS8RK	Fluoranthène	1	0.05	µgЛ	1
LS8RL	Pyrène	1	0.05	µgЛ	1
LS8RM	Benzo-(a)-anthracène	1	0.05	µgЛ	1
LS8RN	Chrysène	1	0.05	μg/Ι	1
LS8RP	Benzo(b)fluoranthène	1	0.05	µgЛ	1
LS8RQ	Benzo(k)fluoranthène	1	0.05	µgЛ	1
LS8RR	Indeno (1,2,3-cd) Pyrène	1	0.05	μg/l	1
LS8RS	Dibenzo(a,h)anthracène	1	0.05	µg/l	1
LSSRT	Nanhtalène	-[0.05	ug/l	1

Eurofins Analyses pour l'Environnement - Site de Saverne

5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 13/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

Dossier N°: 18E081135 N° de rapport d'analyse :AR-18-LK-123004-01

Emetteur: Commande EOL:

Nom projet : Référence commande :

Eau chargée/Résiduaire

Code	Analyse	Principe et référence de la méthode		Unité	Prestation réalisée sur le site de :
LS8RU	Acénaphthylène		0.05	µg∕I	
LS8RV	Acénaphtène		0.05	μg/l	
LS8RW	Benzo(ghi)Pérylène		0.05	µg∕l	
LSIHV	Indice Hydrocarbure Volatil (compris C5-C11)	HS - GC/FID - XP T 90-124	30	μgЛ	

Page 14/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

N° de rapport d'analyse : AR-18-LK-123004-01 Dossier N°: 18E081135

Emetteur: Commande EOL:

Nom projet : Nom affaire : LANFRANCH Référence affaire : CDRP180001 Nom client : SARL LANFRANCH ENVIRONNEMENT Commune : Propiano 1 Référence commande :

Eau chargée/Résiduaire

Référence Eurofins	Référence Client	Date&Heure Prélèvement	Code-barre	Nom flacon
18E081135-001	Bassin Lixivat			
18E081135-002	Eaux pluviales			
18E081135-003	Drains			
18E081135-004	Pz1 (9m) à gauche par rapport au p			
18E081135-005	Pz2 (12m) à droite par rappo	rt au po		
18E081135-006	Pz3 (12m)			
18E081135-007	Forage			
18E081135-008	Aval rejet Ruisseau Rizzanese			
18E081135-009	Amont rejet ruisseau Rizzanes	e		
18E081135-010	Perméat osmoseur			

SIRET: 200 076 958 00020 | Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180725-4305

Echantillon n°:20180725-23538 **Produit:** Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

20110 V

VIGGIANELLO

05 Septembre 2018

Date de réception 25/07/2018 Nature échantillon EAU ENV

Date de prélèvement 25/07/2018 Heure de réception 13:36

Heure de prélèvement10:40Motif de la visiteCONTROLEPrélevé parFOR-Le laboratoire (FO)Lieu/N° prélèvementN°53619

Localisation Exacte PIEZO N°1 Analyse demandée PIEZO 1 + BACTERIO ET SALM

Lieu de prélèvement VIGGIANELLO Autre 20180801

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	12.20	m		
Niveau d'eau statique	3.00	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	4.00	m		
Paramètres déterminés sur place.				
Température de l'Eau	19.8	°C		M_INTERN
Température de l'Air	30.0	°C		M_INTERN
pH mesuré sur place à T° de l'eau	6.3	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1456	μS/cm		NFEN27888
Résistivité surplace	687	ohm.cm		CALCUL
Analyses bactériologiques.				
Coliformes totaux / 100 ml	Non interprétab	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	<15	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	77	NPP/100ml		NFENISO7899-1
Salmonella spp.	Présence	/5L		NFISO19250

Dossier n°: SARL_LANFR-180725-4305

Echantillon n°:20180725-23538 **Produit:** Eaux environnement.

Client:

Bulletin n° NetClient Page: 2 sur 1

ANALYSE	RESULTAT	UNITE	limite	METHODES

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire Directeur

05 Septembre 2018

Dossier n°: SARL LANFR-180725-4305

Echantillon n°:20180725-23539 **Produit:** Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 25/07/2018 Nature échantillon EAU ENV

Date de prélèvement 25/07/2018 Heure de réception 13:36

Heure de prélèvement09:05Motif de la visiteCONTROLEPrélevé parFOR-Le laboratoire (FO)Lieu/N° prélèvementN°53617

Localisation Exacte PIEZO N°2 Analyse demandée PIEZO 1 + BACTERIO ET SALM

Lieu de prélèvement VIGGIANELLO Autre 20180801

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	9.10	m		
Niveau d'eau statique	2.60	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	18	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	4.80	m		
Paramètres déterminés sur place.				
Température de l'Eau	20.0	°C		M_INTERN
Température de l'Air	24.0	°C		M_INTERN
pH mesuré sur place à T° de l'eau	6.6	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	3820	μS/cm		NFEN27888
Résistivité surplace	262	ohm.cm		CALCUL
Analyses bactériologiques.				
Coliformes totaux / 100 ml	Non interprétab	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	<38	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	78	NPP/100ml		NFENISO7899-1
Salmonella spp.	Absence	/5L		NFISO19250
	1			D 1

Dossier n°: SARL_LANFR-180725-4305

Echantillon n°:20180725-23539 **Produit:** Eaux environnement.

Client:

Bulletin n° NetClient Page: 2 sur 1

ANALYSE	RESULTAT	UNITE	limite	METHODES

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire Directeur

SIRET: 200 076 958 00020 : Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180725-4305

Echantillon n°:20180725-23540

Produit: Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

20110

VIGGIANELLO

05 Septembre 2018

Date de réception 25/07/2018 Nature échantillon EAU ENV

Date de prélèvement 25/07/2018 Heure de réception 13:36

Heure de prélèvement10:00Motif de la visiteCONTROLEPrélevé parFOR-Le laboratoire (FO)Lieu/N° prélèvementN°53618

Localisation Exacte PIEZO N°3 Analyse demandée PIEZO 1 + BACTERIO ET SALM

Lieu de prélèvement VIGGIANELLO Autre 20180801

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	11.60	m		
Niveau d'eau statique	5.30	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	7.90	m		
Paramètres déterminés sur place.				
Température de l'Eau	18.0	°C		M_INTERN
Température de l'Air	30.0	°C		M_INTERN
pH mesuré sur place à T° de l'eau	6.4	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	980	μS/cm		NFEN27888
Résistivité surplace	1020	ohm.cm		CALCUL
Analyses bactériologiques.				
Coliformes totaux / 100 ml	Non interprétab	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	<15	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	15	NPP/100ml		NFENISO7899-1
Salmonella spp.	Absence	/5L		NFISO19250

Dossier n°: SARL_LANFR-180725-4305

Echantillon n°:20180725-23540

Produit: Eaux environnement.

Client :

Bulletin n° NetClient Pag

Page: 2 sur

1

ANALYSE	RESULTAT	UNITE	limite	METHODES

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire Directeur

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (eax)

Ajaccio, le

@: Ida2a@corsedusud.fr

05 Septembre 2018

N°53620

Dossier n°: SARL LANFR-180725-4308

Echantillon n°:20180725-23545 Produit: Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

20110

Lieu/N° prélèvement

Date de réception 25/07/2018 Nature échantillon **EAU ENV**

Date de prélèvement 25/07/2018 Heure de réception 13:42

Heure de prélèvement 11:20 Motif de la visite CONTROLE Prélevé par FOR-Le laboratoire (FO)

Localisation Exacte **FORAGE** Analyse demandée **BACTERIO ET SALM**

VIGGIANELLO Lieu de prélèvement Autre 20180801

Observations

ANALYSE RESU	TAT UNITE limite METHODES
Analyses bactériologiques. Coliformes totaux / 100 ml Escherichia coli / 100 ml Entérocoques intestinaux Salmonella spp. Abs	NPP/100ml NFENISO9308-3 NPP/100ml NFENISO7899-1

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 (a): Ida2a@corsedusud.fr

05 Septembre 2018

Dossier n°: SARL LANFR-180829-5316

Echantillon n°:20180829-26138 **Produit:** Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 29/08/2018 Nature échantillon Eau environnement

Date de prélèvement 29/08/2018 Heure de réception 13:31

Heure de prélèvement 10:20 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement PIEZO 1

Localisation Exacte Piezo nº 1 Analyse demandée PIEZ1 VIGI ph cond sur place

Lieu de prélèvement Décharge de Viggianello Autre 20180829

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	100.00	m		
Diamètre	0.80	/mm		
Matériau du tuyau	métalliques			
Profondeur	12.20	m		
Niveau d'eau statique	3.20	m		
Volume d'eau :	suffisant.	_		
Purge:	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non			
Niveau d'eau dynamique	4.20	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.3	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1448	μS/cm		NFEN27888
Résistivité surplace	691	ohm.cm		CALCUL
,				

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80 (Fax) (a): 04.95.29.14.57

@: Ida2a@corsedusud.fr

05 Septembre 2018

Dossier n°: SARL LANFR-180829-5316

Echantillon n°:20180829-26139 Produit: Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 29/08/2018

Date de prélèvement 29/08/2018

Heure de prélèvement 08:50

TRI-le laboratoire (TRI) Prélevé par

Localisation Exacte Piezo nº 2

Lieu de prélèvement Décharge de Viggianello Nature échantillon Eau environnement

Heure de réception 13:31

Motif de la visite Auto surveillance

Lieu/N° prélèvement PIEZO 2

Analyse demandée PIEZ1 VIG ph cond sur place

Autre 20180829

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre			_	
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	9.10	m		
Niveau d'eau statique	1.60	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.			
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non			
Niveau d'eau dynamique	4.70	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.7	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	3650	μS/cm		NFEN27888
Résistivité surplace	274	ohm.cm		CALCUL
'				

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 : lda2a@corsedusud.fr

05 Septembre 2018

Dossier n°: SARL LANFR-180829-5316

Echantillon n°:20180829-26140 **Produit:** Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 29/08/2018 Nature échantillon Eau environnement

Date de prélèvement 29/08/2018 Heure de réception 13:31

Heure de prélèvement 09:40 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement PIEZO 3

Localisation Exacte Piezo n° 3 Analyse demandée PIEZ1 VIG ph cond sur place

Lieu de prélèvement Décharge de Viggianello Autre 20180829

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	11.60	m		
Niveau d'eau statique	6.00	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	6.30	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.4	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	997	μS/cm		NFEN27888
Résistivité surplace	1003	ohm.cm		CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (eax)

Ajaccio, le

@: Ida2a@corsedusud.fr

05 Septembre 2018

Dossier n°: SARL LANFR-180829-5315

Echantillon n°:20180829-26137 Produit: Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 29/08/2018 Nature échantillon Eau environnement

Date de prélèvement 29/08/2018 Heure de réception 13:29

Heure de prélèvement 11:30 Motif de la visite Auto surveillance

TRI-le laboratoire (TRI) Prélevé par Lieu/N° prélèvement **FORAGE**

Localisation Exacte Analyse demandée ph cond sur place

Décharge de Viggianello Lieu de prélèvement Autre 20180829

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
Température de l'Eau	18.8	°C		SPMO150301
Température de l'Air	31.0	°C		M_INTERN
pH mesuré sur place à T° de l'eau	6.5	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1543	μS/cm		NFEN27888
Résistivité surplace	648	ohm.cm		CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 0

26 Septembre 2018

Dossier n°: SARL LANFR-180925-5890

Echantillon n°:20180925-28149 **Produit:** Eaux environnement.

Client: N°55378

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 25/09/2018 Nature échantillon Eau environnement

Date de prélèvement 25/09/2018 Heure de réception 12:04

Heure de prélèvement 09:00 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement PIEZO 1

Localisation Exacte Piezo nº 1 Analyse demandée PIEZ1 VIGI ph cond sur place

Lieu de prélèvement Décharge de Viggianello Autre 20180926

Observations T°7

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	12.20	m		
Niveau d'eau statique	3.45	m		
Volume d'eau :	suffisant.	_		
Purge:	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	4.30	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.3	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	1447	μS/cm		NFEN27888
Résistivité surplace	691	ohm.cm		CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 (a): |da2a@corsedusud.fr

27 Décembre 2018

Dossier n°: SARL LANFR-180925-5890

Echantillon n°:20180925-28150 **Produit:** Eaux environnement.

Client: N°55377

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO

20110

Date de réception 25/09/2018 Nature échantillon Eau environnement

Date de prélèvement 25/09/2018 Heure de réception 12:05

Heure de prélèvement 09:30 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement PIEZO 2

Localisation Exacte Piezo n° 2 Analyse demandée PIEZ1 VIG ph cond sur place

Lieu de prélèvement Décharge de Viggianello Autre 20180926

Observations T

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	9.10	m		
Niveau d'eau statique	2.20	m		
Volume d'eau :	suffisant.	_		
Purge:	Par pompage.	_		
Temps de pompage en min	20	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	6.50	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.3	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	864	μS/cm		NFEN27888
Résistivité surplace	1157	ohm.cm		CALCUL

Page

U

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SIRET: 200 076 958 00020 (a): |da2a@corsedusud.fr

27 Décembre 2018

Dossier n°: SARL LANFR-180925-5890

Echantillon n°:20180925-28151 **Produit:**Eaux environnement.

Client: N°55379

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 25/09/2018 Nature échantillon Eau environnement

Date de prélèvement 25/09/2018 Heure de réception 12:06

Heure de prélèvement 10:00 Motif de la visite Auto surveillance

Prélevé par TRI-le laboratoire (TRI) Lieu/N° prélèvement PIEZO 3

Localisation Exacte Piezo n° 3 Analyse demandée PIEZ1 VIG ph cond sur place

Lieu de prélèvement Décharge de Viggianello Autre 20180926

Observations T°7°

ANALYSE	RESULTAT	UNITE	limite	METHODES
Caractéristiques du puits/piézomètre				
Hauteur tête piézomètre	0.80	m		
Diamètre	100.00	/mm		
Matériau du tuyau	métalliques			
Profondeur	11.60	m		
Niveau d'eau statique	6.20	m		
Volume d'eau :	suffisant.	_		
Purge :	Par pompage.	_		
Temps de pompage en min	10	mn		
Purge total du piézomètre	Non	_		
Niveau d'eau dynamique	6.50	m		
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	6.7	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	3380	μS/cm		NFEN27888
Résistivité surplace	296	ohm.cm		CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO (04.95.29.14.80

(Fax) (eax)

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180925-5893

Echantillon n°:20180925-28253

Produit: Eau résiduaire, pluviale, lixiviat.

Client: 25/09/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

26 Septembre 2018 Ajaccio, le

Destinataire:

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 25/09/2018 Nature échantillon

Date de prélèvement 25/09/2018 Heure de réception 12:17

Heure de prélèvement 10:15 Motif de la visite autosurveillance

Le Laboratoire (TRI) Prélevé par N° de prélèvement/Lieu 55381

Localisation exacte **FORAGE** Analyse de type CDT PH RST sur place

Viggianello Point de Prelev./Station Autre 20180926

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place. pH mesuré sur place à T° de l'eau Conductivité mesurée sur place à 25°C Résistivité surplace	6.3 1276 784	Unité pH µS/cm ohm.cm		NFENISO10523 NFEN27888 CALCUL

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

SYVADEC

Benjamin RIGAUT ISDND VIGGIANELLO 5 Bis Rue Feracci 20250 CORTE

Référence de l'échantillon : 18LAE2840 Prévelé par : Gabriel Lan

Commande: LAE180541 Flacons fournis par le laboratoire : Oui Description: Prélevé le : 22/10/2018 à 9:30 Viggianello pz1 Type de l'échantilon : Réceptionné le : 23/10/2018 à 9:30

Nature: Souterraine Température : 4,2°C

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la confirmité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse: 23/10/2018

Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
Analyses in situ							
Potentiel redox	4		In Situ				
Profondeur du niveau piézométrique	4,38	m	In Situ				
Analyses sur site							
Température de l'eau	17,5	°C	PRESTALAB-MO-33				#
Anions							
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Sulfates	210	mg(SO4)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				
Nitrites	7,9	mg(NO2)/L	NF EN ISO 10304-1				
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Nitrates	17	mg(NO3)/L	NF EN ISO 10304-1				#
Chlorures	170	mg(CI)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				
Orthophosphates	<0,02	mg(PO4)/L	NF EN ISO 10304-1				
Bactériologie							
Escherichia Coli	0	NPP/100mL	NF EN ISO 9308-2				
Entérocoques intestinaux	7	NPP/100mL	Méthode Interne				

amètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
Bactéries coliformes	1100	NPP/100mL	NF EN ISO 9308-2				
Salmonella	Absence	/L	ISO 19250	*			
ΕX							
Benzène	<0,2	μg/L	NF EN ISO 11423-1	*			#
Éthylbenzène	<0,2	μg/L	NF EN ISO 11423-1	*			#
Toluène	<0,5	μg/L	NF EN ISO 11423-1	*			#
Xylene métha + para	<0,2	μg/L	NF EN ISO 11423-1	*			#
ortho-xylène	<0,2	μg/L	NF EN ISO 11423-1	*			#
ons							
Magnésium	64	mg(Mg)/L	NF EN ISO 14911				#
Potassium	3,6	mg(K)/L	NF EN ISO 14911				#
Calcium	82	mg(Ca)/L	NF EN ISO 14911				#
Ammonium	<0,05	mg(NH4)/L	Méthode Interne	*			
Benzo(a)pyrène	<0,005		NF EN ISO 17993	*			i
Benzo(b)fluoranthène	<0,005	μg/L	NF EN ISO 17993	*			,
Fluoranthène	<0,01	μg/L	NF EN ISO 17993	*			i
Somme 4 HAP	<0,005	μg/L	NF EN ISO 17993	*			i
Benzo(g,h,i)pérylène	<0,005	μg/L	NF EN ISO 17993	*			,
Benzo(k)fluoranthène	<0,005	μg/L	NF EN ISO 17993	*			÷
Indéno(1,2,3-cd)pyrène	<0,005	μg/L	NF EN ISO 17993	*			į
Acénaphtène	<0,01	μg/L	NF EN ISO 17993	*			;
Acénaphtylène	<0,01	μg/L	NF EN ISO 17993	*			÷
Anthracène	<0,01	μg/L	NF EN ISO 17993	*			i
Benzo(a)anthracène	<0,01	μg/L	NF EN ISO 17993	*			÷
Chrysène	<0,01	μg/L	NF EN ISO 17993	*			;
Dibenzo(a,h)anthracène	<0,01	μg/L	NF EN ISO 17993	*			į
Fluorène	<0,01	μg/L	NF EN ISO 17993	*			i
2-méthylnaphtalène	<0,01	μg/L	NF EN ISO 17993	*			;
2-méthylfluoranthène	<0,01	μg/L	NF EN ISO 17993	*			÷
Naphtalène	<0,05		NF EN ISO 17993	*			i
Phénanthrène	<0,01		NF EN ISO 17993	*			i
Pyrène	<0,01		NF EN ISO 17993	*			
aux	.5,5 .	1.5					

Parar	nètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
	Nickel	1,5	μg(Ni)/L	NF EN ISO 17294-2	*			#
	Plomb	1,1	μg(Pb)/L	NF EN ISO 17294-2	*			#
	Chrome	0,4	μg(Cr)/L	NF EN ISO 17294-2	*			#
	Cuivre	2,7	μg(Cu)/L	NF EN ISO 17294-2	*			#
	Aluminium	260	μg(AI)/L	NF EN ISO 17294-2	*			#
	Métaux totaux	0,28	mg/L	Méthode interne				
	Manganèse	212	μg(Mn)/L	NF EN ISO 17294-2	*			#
	Zinc	19	μg(Zn)/L	NF EN ISO 17294-2	*			#
	Étain	<0,2	μg(Sn)/L	NF EN ISO 17294-2	*			#
	Fer	390	μg(Fe)/L	NF EN ISO 17294-2	*			#
	Mercure	<0,01	μg(Hg)/L	NF EN ISO 17294-2	*			#
PCB								
	PCB 101	<0,005	μg/L	Méthode interne	*			#
	PCB 118	<0,005	μg/L	Méthode interne	*			#
	PCB 138	<0,001	μg/L	Méthode interne	*			#
	PCB 153	<0,001	μg/L	Méthode interne	*			#
	PCB 180	<0,001	μg/L	Méthode interne	*			#
	PCB 28	<0,005	μg/L	Méthode interne	*			#
	PCB 52	<0,01	μg/L	Méthode interne	*			#
Physi	ico-chimie							
	AOX	140	μg/L	NF EN ISO 9562	*			#
	Conservation	Ech congelé		NF EN ISO 9562	*			#
	Potentiel Hydrogène (pH)	6,4	Unité pH	NF EN ISO 10523				#
	Température de mesure du pH	20,7	°C	NF EN ISO 10523				#
	Indice hydrocarbure	<0,10	mg/L	NF EN ISO 9377-2	*			#
	Azote total	7	mg(N)/L	Méthode Interne				
	Azote Kjeldahl	0,80	mg(N)/L	NF EN 25663				#
	Phosphore total	0,229	mg(P)/L	Méthode Interne				#
	Matières En Suspension (MES)	170	mg/L	NF EN 872				#
	Carbone Organique Total (COT)	8,6	mg(C)/L	NF EN 1484				#
	Conservation	Ech congelé		NF EN 1484				#
	Conductivité à 25°C	1505	μS/cm	NF EN 27888				#
	Conservation	Ech congelé		NF EN 1899-2				
	Demande Biochimique en Oxygène en 5 jours	<2,5	mg(O2)/L	NF EN 1899-2				

Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	DFRAC	
Demande Chimique en Oxygène (DCO)	<30) mg(O2)/L	NF T 90-101				#	_
Indice phénol	<0,0	1 mg/L	NF EN ISO 14402	*			#	

Commentaires:

Salmonelle, ammonium : Les délais de mise en analyse sont supérieurs aux délais normatifs pour ces paramètres et donnent lieu à des réserves sur les résultats. Les matières en suspension ont été réalisées à l'aide de filtre en fibres de verre référence 2104573 de SODIPRO. Les analyses sous-traitées ont été réalisées par le laboratoire EUROFINS HYDROLOGIE EST SAS, accréditation n°1-0685, portée disponible sur www.cofrac.fr.

Les Milles, le 20/11/2018

Gersande GAGNAISON

Responsable Production Clientèle

Ce rapport est confidentiel, il est votre propriété, il ne peut être reproduit sinon en totalité sans l'autorisation du laboratoire. L'Accréditation COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole (#). Les paramètres sous-traités sont identifiés par (*).

SYVADEC

Benjamin RIGAUT ISDND VIGGIANELLO 5 Bis Rue Feracci 20250 CORTE

Référence de l'échantillon : 18LAE2841 Prévelé par : Gabriel Lan

Commande: LAE180541 Flacons fournis par le laboratoire : Oui 22/10/2018 à 10:45 Description: Prélevé le : Viggianello pz2 Type de l'échantilon : Réceptionné le : 23/10/2018 à 9:30

Nature: Souterraine Température : 4,2°C

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la confirmité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse: 23/10/2018

Date de début d'analyse: 23/10/2018 Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
Analyses in situ							
Potentiel redox	0		In Situ				
Profondeur du niveau piézométrique	2,42	m	In Situ				
Analyses sur site							
Température de l'eau	19,7	°C	PRESTALAB-MO-33				#
Anions							
Conservation	Ech réfrigéré		NF EN ISO 10304-1				
Nitrites	3,2	mg(NO2)/L	NF EN ISO 10304-1				
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Nitrates	65	mg(NO3)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Sulfates	400	mg(SO4)/L	NF EN ISO 10304-1				#
Chlorures	840	mg(CI)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				
Orthophosphates	0,35	mg(PO4)/L	NF EN ISO 10304-1				
Bactériologie							
Bactéries coliformes	20000	NPP/100mL	NF EN ISO 9308-2				
Escherichia Coli	30	NPP/100mL	NF EN ISO 9308-2				

aramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
Entérocoques intestinaux	24200	NPP/100mL	Méthode Interne				
Salmonella	Présence	/L	ISO 19250	*			
TEX							
Benzène	<0,2	μg/L	NF EN ISO 11423-1	*			#
Éthylbenzène	<0,2	μg/L	NF EN ISO 11423-1	*			#
Toluène	<0,5	μg/L	NF EN ISO 11423-1	*			#
Xylene métha + para	<0,2	μg/L	NF EN ISO 11423-1	*			#
ortho-xylène	<0,2	μg/L	NF EN ISO 11423-1	*			#
ations							
Potassium	56	mg(K)/L	NF EN ISO 14911				#
Magnésium	120	mg(Mg)/L	NF EN ISO 14911				#
Calcium	260	mg(Ca)/L	NF EN ISO 14911				#
Ammonium	0,24	mg(NH4)/L	Méthode Interne	*			
AP							
Benzo(a)pyrène	<0,005		NF EN ISO 17993	*			#
Benzo(b)fluoranthène	<0,005	μg/L	NF EN ISO 17993	*			#
Fluoranthène	<0,01	μg/L	NF EN ISO 17993	*			#
Somme 4 HAP	<0,005	μg/L	NF EN ISO 17993	*			#
Benzo(g,h,i)pérylène	<0,005	μg/L	NF EN ISO 17993	*			#
Benzo(k)fluoranthène	<0,005	μg/L	NF EN ISO 17993	*			#
Indéno(1,2,3-cd)pyrène	<0,005	μg/L	NF EN ISO 17993	*			#
Acénaphtène	<0,01	μg/L	NF EN ISO 17993	*			#
Acénaphtylène	<0,01	μg/L	NF EN ISO 17993	*			#
Anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
Benzo(a)anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
Chrysène	<0,01	μg/L	NF EN ISO 17993	*			#
Dibenzo(a,h)anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
Fluorène	<0,01	μg/L	NF EN ISO 17993	*			#
2-méthylnaphtalène	<0,01	μg/L	NF EN ISO 17993	*			#
2-méthylfluoranthène	<0,01	μg/L	NF EN ISO 17993	*			#
Naphtalène	<0,05		NF EN ISO 17993	*			#
Phénanthrène	<0,01	μg/L	NF EN ISO 17993	*			#
Pyrène	<0,01		NF EN ISO 17993	*			#
étaux	-,-,-	. 5					
Mercure	<0,01	μg(Hg)/L	NF EN ISO 17294-2	*			#

Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
Cadmium	1	μg(Cd)/L	NF EN ISO 17294-2	*			#
Chrome	1,6	μg(Cr)/L	NF EN ISO 17294-2	*			#
Cuivre	8,11	μg(Cu)/L	NF EN ISO 17294-2	*			#
Fer	2600	μg(Fe)/L	NF EN ISO 17294-2	*			#
Métaux totaux	2,37	mg/L	Méthode interne				
Manganèse	10000	μg(Mn)/L	NF EN ISO 17294-2	*			#
Aluminium	2300	μg(AI)/L	NF EN ISO 17294-2	*			#
Étain	<0,2	μg(Sn)/L	NF EN ISO 17294-2	*			#
Zinc	37,9	$\mu g(Zn)/L$	NF EN ISO 17294-2	*			#
Plomb	4,6	μg(Pb)/L	NF EN ISO 17294-2	*			#
Nickel	16,9	μg(Ni)/L	NF EN ISO 17294-2	*			#
PCB							
PCB 101	<0,005	μg/L	Méthode interne	*			#
PCB 118	<0,005	μg/L	Méthode interne	*			#
PCB 138	<0,001	μg/L	Méthode interne	*			#
PCB 153	<0,001	μg/L	Méthode interne	*			#
PCB 180	<0,001	μg/L	Méthode interne	*			#
PCB 28	<0,005	μg/L	Méthode interne	*			#
PCB 52	<0,01	μg/L	Méthode interne	*			#
Physico-chimie			NE EN 100 0500				
AOX		μg/L	NF EN ISO 9562	•			#
Conservation	Ech congelé		NF EN ISO 9562	*			#
Indice hydrocarbure	<0,10	_	NF EN ISO 9377-2	*			#
Azote total		mg(N)/L	Méthode Interne				
Azote Kjeldahl		mg(N)/L	NF EN 25663				#
Matières En Suspension (MES)		mg/L	NF EN 872				#
Phosphore total		mg(P)/L	Méthode Interne				#
Potentiel Hydrogène (pH)		Unité pH	NF EN ISO 10523				#
Température de mesure du pH	20,8		NF EN ISO 10523				#
Conductivité à 25°C		μS/cm	NF EN 27888				#
Conservation	Ech congelé		NF EN 1899-2				
Demande Biochimique en Oxygène en 5 jours		mg(O2)/L	NF EN 1899-2				
Demande Chimique en Oxygène (DCO)	128	mg(O2)/L	NF T 90-101				#
Indice phénol	<0,01	mg/L	NF EN ISO 14402	*			#

Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	DFRAC
Carbone Organique Total (COT)	ţ	51 mg(C)/L	NF EN 1484				#
Conservation	Ech conge	elé	NF EN 1484				#

Commentaires:

Ammonium, salmonelle: Les délais de mise en analyse sont supérieurs aux délais normatifs pour ces paramètres et donnent lieu à des réserves sur les résultats. Les matières en suspension ont été réalisées à l'aide de filtre en fibres de verre référence 2104573 de SODIPRO. Les analyses sous-traitées ont été réalisées par le laboratoire EUROFINS HYDROLOGIE EST SAS, accréditation n°1-0685, portée disponible sur www.cofrac.fr.

Les Milles, le 20/11/2018

Gersande GAGNAISON

Responsable Production Clientèle

Ce rapport est confidentiel, il est votre propriété, il ne peut être reproduit sinon en totalité sans l'autorisation du laboratoire. L'Accréditation COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole (#). Les paramètres sous-traités sont identifiés par (*).

SYVADEC

Benjamin RIGAUT ISDND VIGGIANELLO 5 Bis Rue Feracci 20250 CORTE

Référence de l'échantillon : 18LAE2842 Prévelé par : Gabriel Lan

Commande: LAE180541 Flacons fournis par le laboratoire : Oui 22/10/2018 à 11:15 Description: Prélevé le : Viggianello pz3 Type de l'échantilon : Réceptionné le : 23/10/2018 à 9:30

Nature: Souterraine Température : 6,3°C

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la confirmité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse: 23/10/2018

Date de début d'analyse: 23/10/2018 Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
Analyses in situ							
Potentiel redox	2		In Situ				
Profondeur du niveau piézométrique	7,3	m	In Situ				
Analyses sur site							
Température de l'eau	17	°C	PRESTALAB-MO-33				#
Anions							
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Sulfates	41	mg(SO4)/L	NF EN ISO 10304-1				#
Chlorures	190	mg(CI)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				
Nitrites	1,0	mg(NO2)/L	NF EN ISO 10304-1				
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Nitrates	4,7	mg(NO3)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				
Orthophosphates	<0,02	mg(PO4)/L	NF EN ISO 10304-1				
Bactériologie							
Bactéries coliformes	2900	NPP/100mL	NF EN ISO 9308-2				
Escherichia Coli	10	NPP/100mL	NF EN ISO 9308-2				

8

Para	mètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	OFRAC
	Entérocoques intestinaux	590	NPP/100mL	Méthode Interne				
	Salmonella	Absence	/L	ISO 19250	*			
BTE	x							
	Benzène	<0,2	μg/L	NF EN ISO 11423-1	*			
	Éthylbenzène	<0,2	μg/L	NF EN ISO 11423-1	*			
	Toluène	<0,5	μg/L	NF EN ISO 11423-1	*			
	Xylene métha + para	<0,2	μg/L	NF EN ISO 11423-1	*			
	ortho-xylène	<0,2	μg/L	NF EN ISO 11423-1	*			
Catio	ons							
	Calcium	40	mg(Ca)/L	NF EN ISO 14911				#
	Magnésium	32	mg(Mg)/L	NF EN ISO 14911				#
	Ammonium	<0,05	mg(NH4)/L	Méthode Interne	*			
	Potassium	2,9	mg(K)/L	NF EN ISO 14911				#
HAP								
	Acénaphtène	<0,01		NF EN ISO 17993	*			#
	Acénaphtylène	<0,01	μg/L	NF EN ISO 17993	*			#
	Anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
	Benzo(a)anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
	Chrysène	<0,01	μg/L	NF EN ISO 17993	*			#
	Dibenzo(a,h)anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
	Fluorène	<0,01	μg/L	NF EN ISO 17993	*			#
	2-méthylnaphtalène	<0,01	μg/L	NF EN ISO 17993	*			#
	2-méthylfluoranthène	<0,01	μg/L	NF EN ISO 17993	*			#
	Naphtalène	<0,05	μg/L	NF EN ISO 17993	*			#
	Phénanthrène	<0,01	μg/L	NF EN ISO 17993	*			#
	Pyrène	<0,01	μg/L	NF EN ISO 17993	*			#
	Benzo(a)pyrène	<0,005	μg/L	NF EN ISO 17993	*			#
	Benzo(b)fluoranthène	<0,005	μg/L	NF EN ISO 17993	*			#
	Fluoranthène	<0,01	μg/L	NF EN ISO 17993	*			#
	Somme 4 HAP	<0,005	μg/L	NF EN ISO 17993	*			#
	Benzo(g,h,i)pérylène	<0,005	μg/L	NF EN ISO 17993	*			#
	Benzo(k)fluoranthène	<0,005	μg/L	NF EN ISO 17993	*			#
	Indéno(1,2,3-cd)pyrène	<0,005	μg/L	NF EN ISO 17993	*			#
Méta	ux							
	Fer	41	μg(Fe)/L	NF EN ISO 17294-2	*			#

Para	mètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
	Cadmium	0,07	μg(Cd)/L	NF EN ISO 17294-2	*			#
	Chrome	0,06	μg(Cr)/L	NF EN ISO 17294-2	*			#
	Cuivre	2,61	μg(Cu)/L	NF EN ISO 17294-2	*			#
	Mercure	<0,01	μg(Hg)/L	NF EN ISO 17294-2	*			#
	Nickel	1,3	μg(Ni)/L	NF EN ISO 17294-2	*			#
	Manganèse	173	μg(Mn)/L	NF EN ISO 17294-2	*			#
	Étain	<0,2	μg(Sn)/L	NF EN ISO 17294-2	*			#
	Plomb	1,6	μg(Pb)/L	NF EN ISO 17294-2	*			#
	Zinc	27,1	μg(Zn)/L	NF EN ISO 17294-2	*			#
	Métaux totaux	0,65	mg/L	Méthode interne				
	Aluminium	620	μg(AI)/L	NF EN ISO 17294-2	*			#
PCB								
	PCB 101	<0,005	μg/L	Méthode interne	*			#
	PCB 118	<0,005	μg/L	Méthode interne	*			#
	PCB 138	<0,001	μg/L	Méthode interne	*			#
	PCB 153	<0,001	μg/L	Méthode interne	*			#
	PCB 180	<0,001	μg/L	Méthode interne	*			#
	PCB 28	<0,005	μg/L	Méthode interne	*			#
	PCB 52	<0,01	μg/L	Méthode interne	*			#
Phys	sico-chimie							
	Potentiel Hydrogène (pH)	6,5	Unité pH	NF EN ISO 10523				#
	Température de mesure du pH	20,5	°C	NF EN ISO 10523				#
	Azote total	3,3	mg(N)/L	Méthode Interne				
	Azote Kjeldahl	1,9	mg(N)/L	NF EN 25663				#
	Phosphore total	1,44	mg(P)/L	Méthode Interne				#
	Matières En Suspension (MES)	1700	mg/L	NF EN 872				#
	Indice hydrocarbure	<0,10	mg/L	NF EN ISO 9377-2	*			#
	Indice phénol	<0,01	mg/L	NF EN ISO 14402	*			#
	Conservation	Ech congelé		NF EN 1899-2				
	Demande Biochimique en Oxygène en 5 jours	<2,5	mg(O2)/L	NF EN 1899-2				
	Demande Chimique en Oxygène (DCO)	123	mg(O2)/L	NF T 90-101				#
	Conductivité à 25°C	1033	μS/cm	NF EN 27888				#
	Carbone Organique Total (COT)	<10	mg(C)/L	NF EN 1484				#
	Conservation	Ech congelé		NF EN 1484				#

2

Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité)FRAC	
AOX	17	0 μg/L	NF EN ISO 9562	*			#	_
Conservation	Ech congel	é	NF EN ISO 9562	*			#	

Commentaires:

Salmonelle, ammonium : Les délais de mise en analyse sont supérieurs aux délais normatifs pour ces paramètres et donnent lieu à des réserves sur les résultats.

BTEX : rendus sous réserve et hors

accréditation car ré analysés en dehors des délais de stabilité. Les matières en suspension ont été réalisées à l'aide de filtre en fibres de verre référence 2104573 de SODIPRO. Les analyses sous-traitées ont été réalisées par le laboratoire EUROFINS HYDROLOGIE EST SAS, accréditation n°1-0685, portée disponible sur www.cofrac.fr.

Les Milles, le 20/11/2018

Gersande GAGNAISON

Responsable Production Clientèle

Ce rapport est confidentiel, il est votre propriété, il ne peut être reproduit sinon en totalité sans l'autorisation du laboratoire. L'Accréditation COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole (#). Les paramètres sous-traités sont identifiés par (*).

SYVADEC

Benjamin RIGAUT ISDND VIGGIANELLO 5 Bis Rue Feracci 20250 CORTE

Référence de l'échantillon : 18LAE2844 Prévelé par : Gabriel Lan

Commande: LAE180541 Flacons fournis par le laboratoire : Oui 22/10/2018 à 10:00 Description: Prélevé le : Viggianello Forage Type de l'échantilon : Eau Réceptionné le : 23/10/2018 à 9:30

Nature: Forage Température : 6,3°C

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la confirmité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse: 23/10/2018

Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
Analyses in situ							
Potentiel redox	-1		In Situ				
Profondeur du niveau piézométrique	8,25	m	In Situ				
Analyses sur site							
Température de l'eau	17,4	°C	PRESTALAB-MO-33				#
Anions							
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Sulfates	260	mg(SO4)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				
Nitrites	1,1	mg(NO2)/L	NF EN ISO 10304-1				
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Nitrates	37	mg(NO3)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				
Orthophosphates	1,3	mg(PO4)/L	NF EN ISO 10304-1				
Chlorures	200	mg(CI)/L	NF EN ISO 10304-1				#
Conservation	Ech réfrigéré		NF EN ISO 10304-1				#
Bactériologie							
Bactéries coliformes	1300	NPP/100mL	NF EN ISO 9308-2				
Escherichia Coli	10	NPP/100mL	NF EN ISO 9308-2				

8

Parai	nètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	OFRAC
	Entérocoques intestinaux	30	NPP/100mL	Méthode Interne				
	Salmonella	Absence	/L	ISO 19250	*			
BTE	C							
	Benzène	<0,2	μg/L	NF EN ISO 11423-1	*			#
	Éthylbenzène	<0,2	μg/L	NF EN ISO 11423-1	*			#
	Toluène	<0,5	μg/L	NF EN ISO 11423-1	*			#
	Xylene métha + para	<0,2	μg/L	NF EN ISO 11423-1	*			#
	ortho-xylène	<0,2	μg/L	NF EN ISO 11423-1	*			#
Catio	ns							
	Calcium	100	mg(Ca)/L	NF EN ISO 14911				#
	Ammonium	<0,05	mg(NH4)/L	Méthode Interne	*			
	Magnésium	68	mg(Mg)/L	NF EN ISO 14911				#
	Potassium	3,6	mg(K)/L	NF EN ISO 14911				#
HAP								
	Acénaphtène	<0,01		NF EN ISO 17993	*			#
	Acénaphtylène	<0,01	μg/L	NF EN ISO 17993	*			#
	Anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
	Benzo(a)anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
	Chrysène	<0,01	μg/L	NF EN ISO 17993	*			#
	Dibenzo(a,h)anthracène	<0,01	μg/L	NF EN ISO 17993	*			#
	Fluorène	<0,01	μg/L	NF EN ISO 17993	*			#
	2-méthylnaphtalène	<0,01	μg/L	NF EN ISO 17993	*			#
	2-méthylfluoranthène	<0,01	μg/L	NF EN ISO 17993	*			#
	Naphtalène	<0,05	μg/L	NF EN ISO 17993	*			#
	Phénanthrène	<0,01	μg/L	NF EN ISO 17993	*			#
	Pyrène	<0,01	μg/L	NF EN ISO 17993	*			#
	Benzo(a)pyrène	<0,005	μg/L	NF EN ISO 17993	*			
	Benzo(b)fluoranthène	<0,005	μg/L	NF EN ISO 17993	*			
	Fluoranthène	<0,01	μg/L	NF EN ISO 17993	*			
	Somme 4 HAP	<0,005	μg/L	NF EN ISO 17993	*			
	Benzo(g,h,i)pérylène	<0,005	μg/L	NF EN ISO 17993	*			#
	Benzo(k)fluoranthène	<0,005	μg/L	NF EN ISO 17993	*			#
	Indéno(1,2,3-cd)pyrène	<0,005	μg/L	NF EN ISO 17993	*			#
Méta	ux							
	Fer	190	μg(Fe)/L	NF EN ISO 17294-2	*			#

Parar	nètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	COFRAC
	Chrome	0,19	μg(Cr)/L	NF EN ISO 17294-2	*			#
	Cuivre	1,04	μg(Cu)/L	NF EN ISO 17294-2	*			#
	Cadmium	0,02	μg(Cd)/L	NF EN ISO 17294-2	*			#
	Aluminium	72	μg(AI)/L	NF EN ISO 17294-2	*			#
	Mercure	<0,01	μg(Hg)/L	NF EN ISO 17294-2	*			#
	Manganèse	344	μg(Mn)/L	NF EN ISO 17294-2	*			#
	Métaux totaux	0,09	mg/L	Méthode interne				
	Plomb	0,4	μg(Pb)/L	NF EN ISO 17294-2	*			#
	Nickel	1,1	μg(Ni)/L	NF EN ISO 17294-2	*			#
	Étain	<0,2	μg(Sn)/L	NF EN ISO 17294-2	*			#
	Zinc	17,4	μg(Zn)/L	NF EN ISO 17294-2	*			#
PCB								
	PCB 101	<0,005	μg/L	Méthode interne	*			#
	PCB 118	<0,005	μg/L	Méthode interne	*			#
	PCB 138	<0,001	μg/L	Méthode interne	*			#
	PCB 153	<0,001	μg/L	Méthode interne	*			#
	PCB 180	<0,001	μg/L	Méthode interne	*			#
	PCB 28	<0,005	μg/L	Méthode interne	*			#
	PCB 52	<0,01	μg/L	Méthode interne	*			#
Physi	ico-chimie							
	Potentiel Hydrogène (pH)	6,3	Unité pH	NF EN ISO 10523				#
	Température de mesure du pH	20,7	°C	NF EN ISO 10523				#
	Azote total	9,2	mg(N)/L	Méthode Interne				
	Phosphore total	<0,05	mg(P)/L	Méthode Interne				#
	Azote Kjeldahl	0,50	mg(N)/L	NF EN 25663				#
	Indice hydrocarbure	<0,10	mg/L	NF EN ISO 9377-2	*			#
	Indice phénol	<0,1	mg/L	NF EN ISO 14402	*			#
	Matières En Suspension (MES)	4,7	mg/L	NF EN 872				#
	AOX	94	μg/L	NF EN ISO 9562	*			#
	Conservation	Ech congelé		NF EN ISO 9562	*			#
	Carbone Organique Total (COT)	6,2	mg(C)/L	NF EN 1484				#
	Conservation	Ech congelé		NF EN 1484				#
	Conservation	Ech congelé		NF EN 1899-2				
	Demande Biochimique en Oxygène en 5 jours	<2,5	mg(O2)/L	NF EN 1899-2				

Paramètres	Résultats	Unités	Normes	Sous- traitance	Limite de qualité	Références de qualité	OFRAC	
Demande Chimique en Oxygène (DCO)	<30	mg(O2)/L	NF T 90-101				#	_
Conductivité à 25°C	1655	μS/cm	NF EN 27888				#	

Commentaires:

salmonelle, ammonium : Les délais de mise en analyse sont supérieurs aux délais normatifs pour ces paramètres et donnent lieu à des réserves sur les résultats. Les matières en suspension ont été réalisées à l'aide de filtre en fibres de verre référence 2104573 de SODIPRO. Les analyses sous-traitées ont été réalisées par le laboratoire EUROFINS HYDROLOGIE EST SAS, accréditation n°1-0685, portée disponible sur www.cofrac.fr.

Les Milles, le 20/11/2018

Gersande GAGNAISON

Responsable Production Clientèle

Ce rapport est confidentiel, il est votre propriété, il ne peut être reproduit sinon en totalité sans l'autorisation du laboratoire. L'Accréditation COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole (#). Les paramètres sous-traités sont identifiés par (*).

3. - Résultats des mesures

Les tableaux suivants regroupent les résultats de mesures réalisées in-situ par IRH Ingénieur Conseil

3.1. - Point 1: Piézomètre 1

3.1.1. - Mesures ponctuelles in situ au point 1

	Résultats des mesures	
Paramètres	Unités	Valeurs
Température de l'effluent	°C	16,8
рН	Unité de pH	6,15
Température de mesure du pH	°C	16,8
Conductivité à 25°C (compensation de température)	μS/cm	1470
Température de mesure de la conductivité	°C	16,8

3.2. - Point 2 : Piézomètre 2

3.2.1. - Mesures ponctuelles in situ au point 2

	Résultats des mesures	
Paramètres	Unités	Valeurs
Température de l'effluent	°C	16,8
рН	Unité de pH	6,65
Température de mesure du pH	°C	16,8
Conductivité à 25°C (compensation de température)	μS/cm	3430
Température de mesure de la conductivité	°C	16,8

3.3. - Point 3: Piézomètre 3

3.3.1. - Mesures ponctuelles in situ au point 3

	Résultats des mesures	
Paramètres	Unités	Valeurs
Température de l'effluent	°C	16,5
рН	Unité de pH	6,15
Température de mesure du pH	°C	16,5
Conductivité à 25°C (compensation de température)	μS/cm	920
Température de mesure de la conductivité	°C	16,5

3.4. - Point 4 : Forage

3.4.1. - Mesures ponctuelles in situ au point 4

	Résultats des mesures	
Paramètres	Unités	Valeurs
Température de l'effluent	°C	17,8
рН	Unité de pH	6,35
Température de mesure du pH	°C	17,8
Conductivité à 25°C (compensation de température)	μS/cm	1600
Température de mesure de la conductivité	°C	17,8

Annexe 5. Rapports d'analyses - Ruisseau du Vetricelli

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80

(Fax) (eax)

Ajaccio, le

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180228-1027

Echantillon n°:20180228-05605 Produit: Eaux environnement.

Client: 51069

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

SARL LANFRANCHI T.P.

18 Avril 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 28/02/2018 Nature échantillon

Date de prélèvement 28/02/2018 Heure de réception 13:54

Heure de prélèvement 12:11 Motif de la visite CONTROLE

FOR-Le laboratoire (FO) PPC Prélevé par Lieu/N° prélèvement

Localisation Exacte Amont ruisseau Vetricelli Analyse demandée **BACTERIO** Lieu de prélèvement Décharge viggianello Autre 20180302

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Analyses bactériologiques. Coliformes totaux / 100 ml Escherichia coli / 100 ml Entérocoques intestinaux	150 61 77	UFC/100ml NPP/100ml NPP/100ml		NFENISO9308-1 NFENISO9308-3 NFENISO7899-1

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

22 Rue François PIETRI - BP 60969 20090 AJACCIO
(a): 04.95.29.14.80 (b): 04.95.29.14.57 (Fax)

SIRET: 200 076 958 00020 (a): Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180228-1027

Echantillon n°:20180228-05606 **Produit:** Eaux environnement.

Client: 51068

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

18 Avril 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 28/02/2018 Nature échantillon

Date de prélèvement 28/02/2018 Heure de réception 13:55

Heure de prélèvement 12:05 Motif de la visite CONTROLE

Prélevé par FOR-Le laboratoire (FO) PPC Lieu/N° prélèvement

Localisation Exacte Aval ruisseau Vetricelli Analyse demandée BACTERIO
Lieu de prélèvement Décharge viggianello Autre 20180302

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Analyses bactériologiques. Coliformes totaux / 100 ml Escherichia coli / 100 ml Entérocoques intestinaux	240 177 230	UFC/100ml NPP/100ml NPP/100ml		NFENISO9308-1 NFENISO9308-3 NFENISO7899-1

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER

bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-072303-01 Version du : 22/05/2018 Page 1/3

Dossier N° : 18M024186 Date de réception : 27/04/2018 Référence bon de commande : AFFAIRE CORP180001 - LANFRANCHI

N° Ech	Matrice	Référence échantillon	Observations
002	Eau de rejet / Eau résiduaire	AMONT REJET RUISSEAU VETRICELLI	(1203) (voir note ci-dessous) (2212) (voir note ci-dessous) Arrivée hors délai pour les analyses de la DBO5, MES, NO2, NO3, conductivité, résistivté et pH

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation. (2212) DBO5 : échantillon(s) congelé(s) après les délais normatifs.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

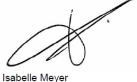
www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ech 18M024186-002 Date de prélèvement	Version AR-18-IX-072303-01(22/05/2018) Votre réf 24/04/2018 09:00	Prélèvement ef		IRH AIX (CLIENT) - IRH13	Page 2/3
Date de réception	27/04/2018 06:38	•		PRORPIANO	
Début d'analyse	27/04/2018	Température de l'enceinte		15.4°C	
Préparations			Résultat	Unité	Incertitu
X488 · Minéralisation	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR.	AC 1-0685 *			_
	15587-1 ou NF EN ISO 15587-2	1-0005			
Paramètres physi	cochimiques généraux		Résultat	Unité	Incertiti
	tion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0	0685 *	250	mg/l	±50
X579 : Conductivité à	25°C Prestation réalisée par nos soins sonde] - NF EN 27888				
Conductivité à 25°C		#	1190	μS/cm	±11:
Température de mesure d	le la conductivité		20.1	°C	±2.0
X559 : Fluorures Presta	tion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0 anductimétrie - NF EN ISO 10304-1	1685 *	0.3	mg/l	±0.1
X590 : Mesure du pH s	Prestation réalisée par nos soins				
pH		#	7.9	Unités pH	±0.7
Température de mesure d	lu pH		20.1	°C	±2.0
X424 : Résistivité à 25 Calcul - NF EN 27888	°C Prestation réalisée par nos soins		843	ohm.cm	
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR anductimétrie - NF EN ISO 10304-1	AC 1-0685 *	81	mg SO4/I	±16
Fer et Manganèse			Résultat	Unité	Incertitu
X02N : Fer (Fe) Prestatio	n réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-068	* *	0.03	mg/l	±0.00
Oligo-éléments - I	Micropolluants minéraux				
			Résultat	Unité	Incertit
X027 : Cyanures aisér 17025:2005 COFRAC 1-0685 Flux continu - NF EN ISO 14	nent libérables Prestation réalisée par nos soins NF EN ISO/IE 403	*	<0.01	mg/l	
X479 : Cyanures totau -0685 Flux continu - NF EN ISO 14	IX Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 CO 403	FRAC *	<0.01	mg/l	
Oxygènes et mati	ères organiques		Résultat	Unité	Incertitu
X467 : Carbone Organ Combustion [Détection IR] - I	ique Total (COT) Prestation réalisée par nos soins	#	6.2	mg/l	±2.7
X463 : Demande biocl Electrochimie - NF EN 1899-	nimique en oxygène (DBO5) Prestation réalisée par nos s 1	oins #	<3.0	mg/l	
X00G : Demande Chin SO/IEC 17025:2005 COFRAC Volumétrie - NF T 90-101	nique en Oxygène (DCO) Prestation réalisée par nos soins 1-0685	NF EN *	47	mg O2/I	±12
Paramètres azoté	s et phosphorés		Résultat	Unité	Incertiti

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env


SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N* ech 18M024186-002 Version AR-18-IX-072303-01(22/05/2018) Votre réf. AMONT REJET RUISSEAU VETRICELLI					Page 3/3
Paramètres azotés et phosphorés		Résultat	Unité		Incertitude
IXS9E : Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins Calcul -	#	0.32	mg N/I		
IX473 : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Titrimétrie [Minéralisation, Distillation] - NF EN 25663	*	<0.5	mg N/I		
IX01Q : Azote Nitrique / Nitrates (NO3) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395					
Azote nitrique	#	0.32	mg N-NO3/I		±0.144
Nitrates	#	1.4	mg NO3/I		±0.63
IX02X: Azote Nitreux / Nitrites (NO2) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395					
Azote nitreux	#	<0.02	mg N-NO2/I		
Nitrites	#	<0.07	mg NO2/I		
IX76J: Phosphore (P) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/AES - NF EN ISO 11885	*	0.03	mg P/I		
Dérivés phénoliques		Résultat	Unité		Incertitude
IX480 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Flux continu - NF EN ISO 14402	*	<0.01	mg/l		

Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 3 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponibles sur denande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-072302-01 Version du : 22/05/2018 Page 1/3

Dossier N°: 18M024186 Date de réception : 27/04/2018

Référence bon de commande : AFFAIRE CORP180001 - LANFRANCHI

N° Ech	Matrice	Référence échantillon	Observations
001	Eau de rejet / Eau résiduaire	AVAL REJET RUISSEAU VETRICELLI	(1203) (voir note ci-dessous)
			(2212) (voir note ci-dessous)
			Arrivée hors délai pour les analyses de
			la DBO5, MES, NO2, NO3, conductivité,
			résistivté et pH

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre demière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.
(2212) DBO5 : échantillon(s) congelé(s) après les délais normatifs.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M024186-001 Version AR-18-IX-072302-01(22/05/2018) Votre réf. AVAL REJET RUISSEAU VETRICELLI					Page 2/3
Date de prélèvement	24/04/2018 09:10	Prélèvement ef	fectué par	IRH AIX (CLIENT) - IRH13	
Date de réception	27/04/2018 06:38	Lieu prélèveme	ent	PRORPIANO	
Début d'analyse	27/04/2018	Température de l'enceinte	e l'air de	15.4°C	
Préparations			Résultat	Unité	Incertitude
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 15587-1 ou NF EN ISO 15587-2	C 1-0685 *			
Paramètres physic	cochimiques généraux		Résultat	Unité	Incertitude
IX02J : Chlorures Presta	tion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-06	85 *	240	mg/l	±48
Chromatographie ionique - Co	nductimétrie - NF EN ISO 10304-1				
IX579 : Conductivité à Potentiométrie [Méthode à la s	25°C Prestation réalisée par nos soins sonde] - NF EN 27888				
Conductivité à 25°C		#	1140	μS/cm	±114
Température de mesure d	e la conductivité		20.3	°C	±2.03
	ion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-06 Inductimétrie - NF EN ISO 10304-1	85 *	0.4	mg/l	±0.16
IX590 : Mesure du pH F Potentiométrie - NF EN ISO 1					
pH		#	7.5	Unités pH	±0.75
Température de mesure d	u pH		20.3	°C	±2.03
IX424 : Résistivité à 25 Calcul - NF EN 27888	°C Prestation réalisée par nos soins		880	ohm.cm	
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA(Inductimétrie - NF EN ISO 10304-1	C 1-0685 *	73	mg SO4/I	±15
Fer et Manganèse	:		Résultat	Unité	Incertitude
IX02N : Fer (Fe) Prestation ICP/AES - NF EN ISO 11885	n réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	0.12	mg/l	±0.036
Oligo-éléments - N	Aicropolluants minéraux		Résultat	Unité	Incertitude
IX027 : Cyanures aisén 17025:2005 COFRAC 1-0685 Flux continu - NF EN ISO 144	nent libérables Prestation réalisée par nos soins NF EN ISO/IEC 103	*	<0.01	mg/l	
IX479 : Cyanures totau 1-0685 Flux continu - NF EN ISO 144	X Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFF	RAC *	<0.01	mg/l	
Oxygènes et matie	ères organiques		Résultat	Unité	Incertitude
IX467 : Carbone Organ Combustion [Détection IR] - N	ique Total (COT) Prestation réalisée par nos soins IF EN 1484	#	6.3	mg/l	±2.84
IX463 : Demande bioch Electrochimie - NF EN 1899-	nimique en oxygène (DBO5) Prestation réalisée par nos soi I	ns #	<3.0	mg/l	
IX00G : Demande Chim ISO/IEC 17025:2005 COFRAC 1 Volumétrie - NF T 90-101	t ique en Oxygène (DCO) Prestation réalisée par nos soins N 1-0885	FEN *	57	mg O2/I	±14
Paramètres azoté	s et phosphorés		Résultat	Unité	Incertitude

Eurofins Hydrologie Est SAS
Rue Lucien Cuenot Site Saint-Jacques II
F-54521 Maxeville cedex

tél. +33 3 83 50 36 00
fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N*ech 18M024186-001 Version AR-18-IX-072302-01(22/05/2018) Votre réf. AVAL REJET RUISSEAU VETRICELLI					Page 3/3
Paramètres azotés et phosphorés					
		Résultat	Unité		Incertitude
IXS9E : Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins	#	0.24	mg N/I		
Calcul -					
IX473 : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA	*	<0.5	mg N/I		
1-0885 Titrimétrie [Minéralisation, Distillation] - NF EN 25663					
IX01Q: Azote Nitrique / Nitrates (NO3) Prestation réalisée par nos soins					
Flux continu - NF EN ISO 13395					
Azote nitrique	#	0.24	mg N-NO3/I		±0.108
Nitrates	#	1.1	mg NO3/I		±0.50
IX02X : Azote Nitreux / Nitrites (NO2) Prestation réalisée par nos soins					
Flux continu - NF EN ISO 13395					
Azote nitreux	#	<0.02	mg N-NO2/I		
Nitrites	#	<0.07	mg NO2/I		
IX76J: Phosphore (P) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885	*	0.04	mg P/I		
ICP/AES - NF EN ISO 11885					
Dérivés phénoliques					
		Résultat	Unité		Incertitude
IX480 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01	mg/l		
Flux continu - NF EN ISO 14402					

Isabelle Meyer Coordinateur de Projets Clients

Eurofins Hydrologie Est SAS

Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 3 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

tél. +33 3 83 50 36 00

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Annexe 6. Rapports d'analyses - Ruisseau du Rizzanese

Rapport d'analyse de juillet dans annexe 2 – rapport complet comprenant les analyses du bassin eaux pluviales, bassin lixiviat, drain sous casier, ouvrages souterrains, aval et amont Rizzanese et perméat osmoseur

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80

(Fax) (eax)

Ajaccio, le

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180228-1028

Echantillon n°:20180228-05607 Produit: Eaux environnement.

Client: 51071

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

28/02/2018

Destinataire:

SARL LANFRANCHI T.P.

18 Avril 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Nature échantillon

Date de prélèvement 28/02/2018 Heure de réception 13:56

Heure de prélèvement 12:37 Motif de la visite autocontrole

FOR-Le laboratoire (FO) PPC Prélevé par Lieu/N° prélèvement

Localisation Exacte amont ruisseau Rizzanese Analyse demandée **BACTERIO** Lieu de prélèvement Décharge viggianello Autre 20180302

Observations

Date de réception

ANALYSE	RESULTAT	UNITE	limite	METHODES
Analyses bactériologiques. Coliformes totaux / 100 ml Escherichia coli / 100 ml Entérocoques intestinaux	Non interprétab 289 15	UFC/100ml NPP/100ml NPP/100ml		NFENISO9308-1 NFENISO9308-3 NFENISO7899-1

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

Directeur

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

22 Rue François PIETRI - BP 60969 20090 AJACCIO
(a): 04.95.29.14.80 (b): 04.95.29.14.57 (Fax)

Dossier n°: SARL LANFR-180228-1028

Echantillon n°:20180228-05608 **Produit**: Eaux environnement.

Client: 51070

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

18 Avril 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 28/02/2018 Nature échantillon

Date de prélèvement 28/02/2018 Heure de réception 13:56

Heure de prélèvement 12:29 Motif de la visite autocontrole

Prélevé par FOR-Le laboratoire (FO) PPC Lieu/N° prélèvement

Localisation Exacte aval ruisseau Rizzanese Analyse demandée BACTERIO
Lieu de prélèvement Décharge viggianello Autre 20180302

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Analyses bactériologiques. Coliformes totaux / 100 ml Escherichia coli / 100 ml Entérocoques intestinaux	224 176 61	UFC/100ml NPP/100ml NPP/100ml		NFENISO9308-1 NFENISO9308-3 NFENISO7899-1

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

Directeur

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-035718-01 Version du : 13/03/2018 Page 1/3

Dossier N° : 18M011149 Date de réception : 01/03/2018

Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech	Matrice	Référence échantillon	Observations
008	Eau souterraine, de nappe phréatique	AMONT RIZZALESE	(1203) (voir note ci-dessous) Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Date de prélèvement	27/02/2018 12:00	Prélèvement eff	fectué par	IRH AIX (CLIEN	T) - IRH13	
Date de réception	01/03/2018 06:37	Température de	l'air de	7.3°C		
Début d'analyse	01/03/2018	l'enceinte				
-	ochimiques généraux					
			Résultat	Unité		Incertit
	ion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1- nductimétrie - NF EN ISO 10304-1	-0685 *	29	mg/l		±9
XK98 : Conductivité à 2 Potentiométrie [Méthode à la s	25°C Prestation réalisée par nos soins onde] - NF EN 27888					
Conductivité à 25°C		#	170	μS/cm		±7
Température de mesure de	e la conductivité		20.7	°C		±9.
	on réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-i nductimétrie - NF EN ISO 10304-1	0685 *	0.08	mg/l		±0.0
X2KZ : Mesure du pH P Potentiométrie - NF EN ISO 10						
pH		#	7.4	Unités pH		±0.
Température de mesure du	ı pH		20.7	°C		±1.
XA37 : Résistivité à 25° Calcul - NF EN 27888	°C Prestation réalisée par nos soins	#	6060	ohm.cm		
, ,	restation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFF aductimétrie - NF EN ISO 10304-1	RAC 1-0685 *	6.1	mg SO4/I		±1
Fer et Manganèse			Résultat	Unité		Incert
X6S8 : Fer (Fe) Prestation ICP/MS - NF EN ISO 17294-2	réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-06/	35 *	63	μg/I		±1
Oligo-éléments - M	licropolluants minéraux		Résultat	Unité		Incert
X152 : Cyanures aisém 17025:2005 COFRAC 1-0685 Flux continu - NF EN ISO 1440	nent libérables Prestation réalisée par nos soins NF EN ISO/II	EC *	<10.0	μg/l		
X226 : Cyanures totaux -0685 Flux continu - NF EN ISO 1440	C Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 CC	FRAC *	<10.0	μg/l		
Oxygènes et matiè	res organiques		Résultat	Unité		Incerti
XA45 : Carbone Organ 7025:2005 COFRAC 1-0685 Oxydation persulfate / détection	ique Total (COT) Prestation réalisée par nos soins NF EN IS n IR - NF EN 1484	O/IEC *	2.6	mg C/I		±1.
XA41 : Demande bioch Electrochimie sans dilution - N	imique en oxygène (DBO5) Prestation réalisée par nos IF EN 1899-2	soins #	1.1	mg O2/I		±0.
KA38 : Demande chimi BO/IEC 17025:2005 COFRAC 1- Volumétrie - NF T 90-101	que en oxygène (DCO) Prestation réalisée par nos soins l 0685	NF EN *	<30	mg O2/I		
Paramètres azotés	et phosphorés		Résultat	Unité		Incerti
XS98 : Azote global (N	O2+NO3+NTK) Prestation réalisée par nos soins	#	0.3	mg N/I		

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N°ech 18M011149-008 Version AR-18-IX-035718-01(13/03/2018) Votre réf. AMONT RIZZALESE					Page 3/3
Paramètres azotés et phosphorés					
		Résultat	Unité		Incertitude
IX04P : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Volumétrie - NF EN 25663	*	<0.5	mg N/I		
IX02L : Nitrates Prestation réalisée par nos soins	#	1.4	mg NO3/I		±0.42
Chromatographie ionique - Conductimétrie - NF EN ISO 10304-1					
IX02W: Nitrites Prestation réalisée par nos soins	#	<0.01	mg NO2/I		
Chromatographie ionique - UV - NF EN ISO 10304-1					
IX6S6: Phosphore total Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/MS - NF EN ISO 17294-2	*	<0.01	mg/l		
Dérivés phénoliques		Résultat	Unité		Incertitude
IXA65: Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Flux continu - NF EN ISO 14402	*	<0.01	mg/l		

Isabelle Meyer Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 3 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport nest autorisée que sous s'a forme integrale. Il comporte à page(s). Le present rapport ne concerne que les objets soums à réssai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Je sont identifiées par le symbole *. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande. Pour les résultats issus d'une soust-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande. Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément describles que demandé.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-035719-01 Version du : 13/03/2018 Page 1/3

Dossier N°: 18M011149 Date de réception : 01/03/2018 Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech Matrice Référence échantillon Observations AVAL RIZZALESE (1203) (voir note ci-dessous) Eau souterraine, de nappe Arrivée hors délai pour les analyses des phréatique paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

fax +33 8 20 20 90 32

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

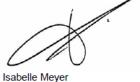
N° ech 18M011149-0	009 Version AR-18-IX-035719-01(13/03/2018) Votre réf. A	AVAL RIZZALE	ESE		Page 2/3
Date de prélèvement	27/02/2018 12:15	Prélèvement ef	fectué par	IRH AIX (CLIENT) - IRH1	3
Date de réception		lempérature de l'enceinte	l'air de	7.3°C	
Début d'analyse	01/03/2018	encente			
Paramètres phy	vsicochimiques généraux		Résultat	Unité	Incertitude
IX38G : Chlorures Pr	restation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-068	5 *	29	mg/l	±9
Chromatographie ionique	- Conductimétrie - NF EN ISO 10304-1				
	é à 25°C Prestation réalisée par nos soins				
Potentiométrie [Méthode à	i la sonde] - NF EN 27888				
Conductivité à 25°C		#	160	µS/cm	±72
Température de mesur			20.8	°C	±9.36
	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 - Conductimétrie - NF EN ISO 10304-1	*	0.08	mg/l	±0.032
	OH Prestation réalisée par nos soins				
Potentiométrie - NF EN IS					
pH		#	7.4	Unités pH	±0.37
Température de mesur	re du pH		20.8	°C	±1.04
	25°C Prestation réalisée par nos soins	#	6130	ohm.cm	
Calcul - NF EN 27888					
	(4) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC - Conductimétrie - NF EN ISO 10304-1	1-0685 *	6.0	mg SO4/I	±1.20
Fer et Manganè	ese		Résultat	Unité	Incertitude
IV6S9 - For (Fo) Produ	ation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685		59	µg/l	±18
ICP/MS - NF EN ISO 172			38	pgn	110
Oligo-éléments	- Micropolluants minéraux		Résultat	Unité	Incertitude
IX152 : Cyanures ais 17025:2005 COFRAC 1-068 Flux continu - NF EN ISO	sément libérables Prestation réalisée par nos soins NF EN ISO/IEC 5 14403	*	<10.0	µg/I	
IX226 : Cyanures tot 1-0685 Flux continu - NF EN ISO	taux Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA 14403	AC *	<10.0	µg/l	
Ovygènes et ma	atières organiques				
Oxygenes et me	and the state of t		Résultat	Unité	Incertitude
IXA45 : Carbone Org 17025:2005 COFRAC 1-068 Oxydation persulfate / déte	ganique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEI 15 ection IR - NF EN 1484	c *	2.5	mg C/I	±1.13
IXA41 : Demande bid Electrochimie sans dilution	ochimique en oxygène (DBO5) Prestation réalisée par nos soins n - NF EN 1899-2	s #	1.2	mg O2/I	±0.48
IXA38 : Demande ch ISO/IEC 17025:2005 COFRA Volumétrie - NF T 90-101		N *	<30	mg O2/I	
Paramètres azo	tés et phosphorés				
			Résultat	Unité	Incertitude
IXS98 : Azote global Calcul -	I (NO2+NO3+NTK) Prestation réalisée par nos soins	#	0.3	mg N/I	

 Eurofins Hydrologie Est SAS
 tél. +33 3 83 50 36 00

 Rue Lucien Cuenot Site Saint-Jacques II
 fax +33 8 20 20 90 32

 F-54521 Maxeville cedex
 F-54521 Maxeville cedex

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B



ech 18M011149-009 Version AR-18-IX-035719-01(13/03/2018) Votre réf. AVAL RIZZALESE					Page 3/3
Paramètres azotés et phosphorés					
		Résultat	Unité		Incertitude
IX04P : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Volumétrie - NF EN 25663	*	<0.5	mg N/I		
IX02L: Nitrates Prestation réalisée par nos soins	#	1.4	mg NO3/I		±0.42
Chromatographie ionique - Conductimétrie - NF EN ISO 10304-1					
IX02W: Nitrites Prestation réalisée par nos soins	#	<0.01	mg NO2/I		
Chromatographie ionique - UV - NF EN ISO 10304-1					
IX6S6: Phosphore total Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/MS - NF EN ISO 17294-2	*	<0.01	mg/l		
Dérivés phénoliques					
		Résultat	Unité		Incertitude
IXA65 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Flux continu - NF EN ISO 14402	*	<0.01	mg/l		

Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 3 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément

disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tál +33 3 83 50 36 00

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

22 Rue François PIETRI - BP 60969 20090 AJACCIO 04.95.29.14.80

(Fax) (eax)

@: Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180725-4303

Echantillon n°:20180725-23533 Produit: Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire:

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

20110

VIGGIANELLO

05 Septembre 2018

Date de réception 25/07/2018 Nature échantillon

Date de prélèvement 25/07/2018 Heure de réception 13:33

Heure de prélèvement 11:50 Motif de la visite autocontrole PPC-Le laboratoire (PPC) Prélevé par Lieu/N° prélèvement N°53621

Localisation Exacte amont ruisseau Rizzanese Analyse demandée **BACTERIO PHSP CDTSP**

Lieu de prélèvement Décharge viggianello Autre 20180727

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	7.7	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	185	μS/cm		NFEN27888
Analyses bactériologiques.				
Coliformes totaux / 100 ml	Non interprétab	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	549	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	212	NPP/100ml		NFENISO7899-1

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

Directeur

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

SIRET: 200 076 958 00020 | Ida2a@corsedusud.fr

Dossier n°: SARL LANFR-180725-4303

Echantillon n°:20180725-23534 **Produit:** Eaux environnement.

Client:

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

20110

VIGGIANELLO

05 Septembre 2018

Date de réception 25/07/2018 Nature échantillon

Date de prélèvement 25/07/2018 Heure de réception 13:34

Heure de prélèvement12:12Motif de la visiteautocontrolePrélevé parPPC-Le laboratoire (PPC)Lieu/N° prélèvementN°53622

Localisation Exacte aval ruisseau Rizzanese Analyse demandée BACTERIO PHSP CDTSP

Lieu de prélèvement Décharge viggianello Autre 20180727

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
pH mesuré sur place à T° de l'eau	7.8	Unité pH		NFENISO10523
Conductivité mesurée sur place à 25°C	184	μS/cm		NFEN27888
Analyses bactériologiques.				
Coliformes totaux / 100 ml	Non interprétab	UFC/100ml		NFENISO9308-1
Escherichia coli / 100 ml	125	NPP/100ml		NFENISO9308-3
Entérocoques intestinaux	144	NPP/100ml		NFENISO7899-1

Page

1

Ce rapport d'essai ne concerne que les objets soumis à l'essai.

La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire

Directeur

Annexe 7. Rapports IBGN – Rizzanese

DIAGNOSTICS HYDROBIOLOGIQUES PRINTEMPS ET AUTOMNE 2018

ETUDES DES PEUPLEMENTS DE MACROINVERTEBRES BENTHIQUES
SUR LE FLEUVE DU RIZZANESE
EN AMONT ET EN AVAL DE L'INSTALLATION DE STOCKAGE DES
DECHETS NON DANGEREUX ET DE LA DECHETTERIE DE TEPARELLA
(COMMUNE DE VIGGIANELLO)

RAPPORT DES CAMPAGNES PRINTEMPS ET AUTOMNE 2018

Etude des peuplements de macroinvertébrés benthiques sur le fleuve du Rizzanese, en amont et en aval de l'Installation de Stockage des Déchets Non Dangereux (ISDND) et de la déchetterie de Teparella

Commune de Viggianello

Toutes les figures dont la source n'est pas indiquée sont la propriété des auteurs.

TABLE DES MATIERES

PREA	AMBULE	2
I. (OBJECTIF DE L'ETUDE	4
II. IN	DICE BIOLOGIQUE GLOBAL NORMALISÉ	5
1.	Analyses biologiques	5
2.	OBJET, SIGNIFICATION ET LIMITES DE L'IBGN	6
<i>c</i>	a. Milieux concernés	7
į	b. Objectifs de l'I.B.G.N.	<i>7</i>
(c. Catégories de perturbations	7
·	d. Périodes d'échantillonnage et conditions hydrologiques	7
6	e. Méthodologie de l'échantillonnage	8
3.	Tri, determination et denombrement faunistique	9
C	a. Tri	9
i	b. Détermination	10
Ó	c. Dénombrement	10
4.	Analyse faunistique	11
<i>c</i>	a. Détermination de l'indice	11
į	b. Procès-verbal de l'essai	11
Ó	c. Correspondance note - couleur	12
(d. Traitement de données	12
III. PI	ERIMETRE DE L'ETUDE	13
1.	Geologie	13
2.	Hydrologie	15
·	a. Printemps 2018	15
į	b. Automne 2018	17
3.	REJETS DES COLLECTIVITES	19
4.	STATIONS ECHANTILLONNEES	19
III. R	ÉSULTATS ET INTERPRÉTATIONS	21
5.	Printemps 2018	21
<i>c</i>	a. Station Amont	21
į	b. Station Aval	27
6.	Automne 2018	32
	a Station Amont	32

b.	b. Station Aval	37
V. CO	NCLUSION	43
1.	Printemps 2018	43
2.	AUTOMNE 2018	45
BIBLIC	OGRAPHIE	48
ANNE	XES	50

TABLES DES ILLUSTRATIONS

FIGURES

Figure 1. Échantillonneur de type Surber	9
Figure 2. Passage au tamis et tri des prélèvements	10
Figure 3. Carte géologique de la Corse (Gautier, 2002)	14
Figure 4. Cumul de précipitations en Corse, juin 2018	16
Figure 5. Précipitations relevées en octobre 2018.	18
Figure 6. Plan de la zone d'échantillonnage	20
Figure 7. Structure des peuplements de macroinvertébrés benthiques pour la station Amont Pont d'Ac	coravo
Printemps 2018	23
Figure 8. Effectifs par taxons pour la station Amont Pont d'Acoravo Printemps 2018	24
Figure 9. Structure des peuplements de macroinvertébrés benthiques	29
Figure 10. Effectifs par taxon pour la station Aval Vetricelli Printemps 2018	30
Figure 11. Structure des peuplements de macroinvertébrés benthiques	34
Figure 12. Effectifs par taxon pour la station Amont Pont d'Acoravo Automne 2018	36
Figure 13. Structure des peuplements de macroinvertébrés benthiques	39
Figure 14. Effectifs par taxon pour la station Aval Vetricelli Automne 2018	40
<u>TABLEAUX</u>	
Tableau I. Relation entre la note de l'Indice et la qualité de l'eau analysée	12
Tableau II. Habitats prospectés au niveau de la station Amont Pont d'Acoravo représentés par les cou	ples
substrat / vitesse d'écoulement	21
Tableau III. Caractéristiques indicielles de la station Amont Pont d'Acoravo	22
Tableau IV. Habitats prospectés au niveau de la station Aval Vetricelli représentés par les couples sub	strat /
vitesse d'écoulement	27
Tableau V. Caractéristiques indicielles de la station Aval Vetricelli	28
Tableau VI. Habitats prospectés au niveau de la station Amont Pont d'Acoravo	32
Tableau VII. Caractéristiques indicielles de la station Amont Pont d'Acoravo	33
Tableau VIII. Habitats prospectés au niveau de la station Aval Vetricelli représentés par les couples su	ıbstrat /
vitesse d'écoulement	37
Tableau IX. Caractéristiques indicielles de la station Aval Vetricelli	38
Tableau X. Table IBGN Printemps 2018.	43
Tableau XI. Table IBGN Automne 2018.	45

PREAMBULE

Le suivi des milieux aquatiques, et en particulier le suivi hydrologique des cours d'eau, constitue un maillon clé dans la gestion des écosystèmes.

Aujourd'hui, de plus en plus d'acteurs du territoire mettent en avant la nécessité d'appuyer la gestion des sites sur un système de suivi des milieux et des évaluations des impacts des actes de gestion.

L'appréciation de la qualité d'un milieu aquatique à l'aide des méthodes biologiques est fondée sur l'application d'un principe général selon lequel à un milieu donné correspond une biocénose (ensemble des êtres vivants peuplant un écosystème) particulière. De ce fait, les peuplements d'un habitat peuvent être considérés comme l'expression synthétique de l'ensemble des facteurs écologiques qui conditionnent le système. Les altérations du milieu qui se traduisent par l'évolution de certains de ces facteurs, provoquent alors des modifications plus ou moins marquées des communautés vivantes qu'il héberge. Aussi, l'analyse de la composition d'un répertoire faunistique permet de définir l'état du milieu tandis que l'analyse biocénotique comparative («amont - aval» ou «avant - après») permet d'évaluer l'effet des changements de l'environnement qui affectent les communautés.

Dans le domaine des eaux courantes, les diagnoses sont le plus souvent fondées sur l'analyse des peuplements de macroinvertébrés benthiques (inféodés au substrat). En effet, le benthos combine un grand nombre d'avantages dans l'appréciation globale de la qualité des milieux par rapport aux autres groupes faunistiques ou floristiques (relative stabilité dans le temps et dans l'espace de populations suffisamment sédentaires pour établir une bonne correspondance avec les conditions du milieu, sensibilité des organismes au climat stationnel à travers la qualité de l'eau et du substrat, grande variété taxonomique...).

L'Indice Biologique Global Normalisé (NF T90-350 Mars 2004), se base sur l'étude des peuplements de macro-invertébrés benthiques, c'est à dire les larves d'insectes, les crustacés, les mollusques, les vers... qui colonisent la surface et les premiers centimètres du lit de la rivière (sédiments, végétaux, graviers...).

Cette démarche a pour but de caractériser les perturbations par leurs effets sur la biocénose benthique en place. En effet, un peuplement va dépendre de la capacité d'accueil (habitats variés/nutriments) du substrat, c'est à dire de son aptitude biogène ainsi que de la qualité biologique de l'eau de la rivière.

Toutes variations physiques, chimiques ou biologiques permanentes ou temporaires du milieu vont perturber les habitats, la faune et la flore qui le comporte et les invertébrés de par leur place dans l'écosystème (consommateurs primaires et secondaires) vont intégrer ces facteurs de façon plus ou moins marquée.

Les macro-invertébrés benthiques sont donc utilisés pour leur capacité indicatrice intégratrice afin d'avoir une appréciation globale de la qualité biologique d'une rivière et de constater les effets de diverses perturbations sur le milieu aquatique.

I. OBJECTIF DE L'ETUDE

Cette étude s'inscrit dans le cadre de la politique de veille environnementale mise en place par le SYVADEC dans le cadre du traitement des déchets.

Elle a pour objet l'étude des rejets en périphérie d'installations de stockage des déchets grâce à des moyens de bio-surveillance.

Ce document présente le suivi biologique et l'étude des peuplements d'invertébrés benthiques, par la méthode de l'Indice Biologique Global Normalisé (NF T90-350 Mars 2004), réalisée en amont et aval de l'Installation de Stockage des Déchets Non Dangereux (ISDND) et de la déchetterie de Teparella.

La zone d'étude choisie correspond au Rizzanese, qui coule en aval du centre de traitement.

L'estimation de la qualité biologique est réalisée à l'aide de prélèvements et d'analyses de macro-invertébrés benthiques (prélèvements, tri, détermination, établissement des listes faunistiques quantitatives) et du calcul de l'Indice Biologique Global.

Deux stations situées sur le fleuve Rizzanese, ont été prospectées :

- o Station Amont ISDND, située en aval du barrage du Rizzanese (Pont d'Acoravo D 69),
- Station Aval ISDND, située près de la confluence Rizzanese-Vetricelli (en Aval du Vetricelli sur la T40 ancienne RN 196).

Le choix de ces deux stations a été effectué en fonction des variations hydrologiques caractéristiques liées à la présence de l'ouvrage du barrage du Rizzanese ainsi qu'en fonction des confluences existantes avec les ruisseaux annexes.

La méthode normalisée de l'IBGN appliquée à ces stations leur attribuera une note indicielle comprise entre 0 et 20 attestant de la qualité biologique de l'eau. Cette étude sera complétée par une analyse plus approfondie de la structure des peuplements de macro-invertébrés benthiques.

Le présent document présente le suivi biologique et l'étude des peuplements de macro-invertébrés benthiques de la campagne d'analyses, effectuées aux printemps et l'automne 2018.

II. INDICE BIOLOGIQUE GLOBAL NORMALISÉ

1. Analyses biologiques

La gestion des eaux douces courantes nécessite une bonne connaissance de leur état et de leur degré de transformation. Pour asseoir cette connaissance, deux démarches différentes mais complémentaires existent :

- o la démarche physico-chimique qui caractérise les perturbations par leurs causes et donc par la présence d'éléments polluants.
- la démarche biocénotique qui caractérise les perturbations par leurs effets sur les communautés existantes.

La prise en compte de ces organismes vivants, apporte un élément non négligeable à l'évaluation de la qualité des milieux étudiés. En effet, chaque organisme présente des exigences bien définies vis-à-vis des différents facteurs physiques, chimiques ou biologiques du milieu. Ainsi, cette seconde démarche fait partie du nombre restreint de techniques valables pour l'appréciation globale de la qualité des systèmes d'eau courante et des effets réels des perturbations, et pour cause elle tient compte du vivant. A ce jour, l'IBGN (Indice Biologique Global Normalisé) est le fruit de l'amélioration de diverses techniques intermédiaires appliquées durant plusieurs années. En effet la mise au point de l'IBGN s'est appuyée sur des analyses statistiques de nombreuses données issues de l'application des protocoles expérimentaux. Actuellement homologuée, la méthode de l'IBGN constitue la forme officialisée de l'Indice Biologique Global et en reprend l'essentiel de la méthodologie. C'est une méthode normalisée (NF T90-350 Mars 2004), qui présente, outre sa fiabilité, un intérêt plus que conséquent de par son accès relativement aisé des groupes taxonomiques utilisés, sa rapidité de mise en œuvre et donc son coût relativement modéré.

L'appréciation de la qualité d'un milieu aquatique à l'aide des méthodes biologiques est fondée sur l'application d'un principe général selon lequel à un milieu donné correspond une biocénose (ensemble des êtres vivants peuplant un écosystème) particulière. Cette biocénose n'étant que l'expression des différents facteurs et interactions très fragiles qui régissent ce milieu, une relation de causalité est donc présente entre le milieu étudié et l'écosystème qui y est présent. Une modification, même infime, des paramètres physiques, chimiques ou biologiques de ce milieu entraînerait inéluctablement une modification des caractéristiques de l'écosystème. Ainsi, l'analyse de la composition d'un répertoire faunistique considéré

isolément permet de définir l'état du milieu tandis que l'analyse biocénotique comparative (« amont / aval » ou « avant / après ») permet d'évaluer l'effet des changements de l'environnement qui affectent les communautés (comme dans le cas d'études avant vidange et post-vidange d'un barrage).

Dans le domaine des eaux courantes, les diagnoses sont le plus souvent fondées sur l'analyse des peuplements de macro-invertébrés benthiques (inféodés au substrat). En effet, le benthos combine un grand nombre d'avantages dans l'appréciation globale de la qualité des milieux par rapport aux autres groupes faunistiques ou floristiques, parmi lesquels :

- o sa répartition dans l'ensemble des écosystèmes aquatiques,
- o sa grande diversité taxonomique (environ 152 familles, 700 genres et plus de 2000 espèces recensées en France), le fait qu'il regroupe de nombreuses espèces bio-indicatrices (indices précoces de modifications du milieu) et constitue des biocénoses souvent variées. Notons tout de même la particularité de la Corse qui présente un certain nombre de lacunes faunistiques par rapport à la France continentale.
- o la relative stabilité dans le temps et dans l'espace de populations suffisamment sédentaires pour établir une bonne correspondance avec les conditions du milieu,
- o la sensibilité de ses organismes au climat stationnel à travers la qualité de l'eau et du substrat,
- sa situation à plusieurs niveaux trophiques du système (consommateurs primaires et secondaires, décomposeurs),
- o la facilité d'échantillonnage et la bonne conservation des échantillons.

Les macro-invertébrés benthiques constituent donc de bons intégrateurs de la qualité globale de l'écosystème aquatique et sont facilement exploitables.

2. Objet, signification et limites de l'IBGN

«L'Indice Biologique Global constitue une information synthétique exprimant l'aptitude d'un site d'eau courante au développement des invertébrés benthiques toutes causes confondues. Il permet un classement objectif des qualités biogènes de sites appartenant à des systèmes différents, naturels, modifiés, artificiels ou diversement dégradés ».

Cette méthode est utilisée pour compléter les techniques usuelles de qualification et de détection des sources de perturbations (analyses physico-chimiques des eaux par exemple) par une indication ayant une signification différente, puisque visant à caractériser les perturbations

par leurs effets et non par leurs causes, et plus globale puisque traduisant à la fois les caractéristiques de l'eau et du substrat.

a. Milieux concernés

Tous les milieux d'eau douce courante peuvent faire l'objet d'un I.B.G.N. dans la mesure où le protocole normalisé d'échantillonnage peut être strictement respecté. La norme ne sera donc pas appliquée aux cours d'eau pour lesquels :

- o la profondeur excède environ un mètre sur la majorité du lit mouillé (cas des grands cours d'eau),
- o la vitesse excessive du courant ne permet pas d'échantillonner l'ensemble de la mosaïque d'habitats,
- o la turbidité de l'eau empêche de visualiser les supports,
- o la faune benthique n'est pas strictement dulçaquicole (cas des zones estuariennes),
- o la faune est peu diversifiée naturellement ou de par la conception du milieu (cas des zones de sources, des rivières de haute altitude, des petits canaux peu profonds, ...)

b.Objectifs de l'I.B.G.N.

L'I.B.G.N. peut être utilisé avec des objectifs différents :

- o Situer la qualité biologique d'un site d'eau courante considéré isolément,
- O Suivre l'évolution au cours du temps de la qualité biologique d'un site,
- O Suivre l'évolution dans l'espace de la qualité biologique d'un cours d'eau,
- o Évaluer, dans les limites de ses sensibilités, l'effet d'une perturbation sur le milieu.

c.Catégories de perturbations

Les principales catégories de perturbations sont :

- o les pollutions classiques à dominante organique,
- o les perturbations physiques du milieu.

d.Périodes d'échantillonnage et conditions hydrologiques

Les communautés d'invertébrés aquatiques évoluent au cours de l'année du fait des cycles saisonniers des espèces et de l'évolution des conditions du milieu (hydrologie, qualité de l'eau, végétation aquatique...). Ainsi, trois périodes peuvent être reconnues :

- o une période d'hiver, de décembre à avril,
- o une période de printemps / début d'été, de mai à juin / juillet,

o une période d'été / automne, de juillet à novembre.

L'étude et l'échantillonnage des deux stations ont été réalisés du 18-22 juin 2018 (période printemps) et du 8-12 octobre (période automne). L'échantillonnage est réalisé pour des conditions de débit qui permettent l'investigation de l'ensemble des habitats d'une station (donc en dehors des périodes de hautes eaux) et pour un régime hydrologique stabilisé de façon à s'affranchir des effets consécutifs à des évènements hydrologiques exceptionnels. Dans le cas de tels évènements, la durée d'attente pour prélever est au minimum de 10 à 15 jours (temps de colonisation d'un substrat artificiel), de préférence trois semaines pour s'affranchir de tout risque.

e.Méthodologie de l'échantillonnage

Le choix des stations

Avant chaque échantillonnage, une reconnaissance du site de prélèvement est effectuée avant de localiser les habitats qui seront ensuite prélevés. Pour définir ce choix, on suit le protocole d'échantillonnage décrit par la norme AFNOR NF T 90-350. On définit les différents habitats ayant des substrats et des vitesses de courant variés. Quelle que soit la taille du cours d'eau, la station devra être aussi représentative que possible de la morphologie du tronçon, y compris des éventuelles altérations hydro-morphologiques.

o L'appareillage

Il correspond à celui qui est décrit dans la norme (Ministère de l'Ecologie et du Développement Durable, 2015) à l'exclusion de tout autre type. Il est équipé d'un filet d'ouverture de maille d'un diamètre de 500 µm. Ce filet sera suffisamment long pour limiter le colmatage et la fuite des individus. Il est nécessaire de le vider et de le nettoyer après chaque prélèvement pour éviter les mélanges de faune. Ainsi, on utilisera, pour le faciès lotique, un échantillonneur de typer « Surber » (Figure 1) avec une base de surface de 1/20m². La base du Surber est posée sur le fond du lit de façon à encadrer l'habitat à échantillonner, l'ouverture du filet face au courant. Le support est « nettoyé » à la main. Les substrats meubles seront échantillonnés sur une épaisseur de quelques centimètres. Lorsque le support présente une surface supérieure à 1/20m² (bloc) et ne peut entrer dans la base du Surber, il est préconisé de le prospecter devant l'appareil, les organismes étant emportés par le courant vers le filet. La surface supplémentaire échantillonnée par rapport à celle du Surber compense la perte d'une partie des organismes. Ce type d'appareillage entraîne des contraintes en termes de profondeur

du milieu à échantillonner. On considère qu'au-delà de 1 mètre de profondeur, ces appareils sont difficilement utilisables.

Figure 1. Échantillonneur de type Surber.

L'échantillonnage

L'échantillonnage de faune benthique de chaque station est constitué de douze prélèvements de 1/20m² effectués séparément dans huit habitats distincts parmi les combinaisons définies dans le tableau de protocole d'échantillonnage. L'ensemble des huit prélèvements doit donner une vision de la diversité des habitats de la station. On recherche ainsi l'obtention d'un bilan le plus complet possible des taxons présents sur le site à l'aide d'une technique qui permet également de réduire les écarts entre opérateurs. La trop faible diversité des habitats dans la station aval permet difficilement de réaliser les huit prélèvements.

o La fixation

Elle est réalisée sur le terrain par addition d'une solution de formol ou d'éthanol à concentration finale de 10 %. On veillera à homogénéiser correctement l'échantillon pour une bonne conservation des organismes, celle-ci étant indispensable à la détermination.

3. Tri, détermination et dénombrement faunistique

Ces étapes ont été réalisées en laboratoire.

a. Tri

Au laboratoire, la faune est totalement extraite du substrat contenu dans l'échantillon. Les organismes (benthiques) sont considérés ou comptabilisés sous forme larvaire, nymphale ou adulte lorsque ce dernier stade à une vie immergée. Les fourreaux et coquilles vides ne sont pas Diagnostics hydrobiologiques 9

pris en compte. L'opération est facilitée par l'utilisation d'une colonne de trois ou quatre tamis dont le dernier à une maille de 500 µm (Figure 2). La norme n'impose pas de trier les huit habitats séparément puisque la note indicielle est calculée sur la base de la totalité de la biocénose de la station. La pratique du sous-échantillonnage d'un prélèvement riche en faune est à exclure car elle peut entraîner une sous-estimation de la diversité taxonomique et l'absence d'un taxon indicateur peu représenté dans l'échantillon.

Figure 2. Passage au tamis et tri des prélèvements.

b. Détermination

L'unité taxinomique retenue est la famille, à l'exception de quelques groupes faunistiques pour lesquels c'est l'embranchement ou la classe. Le répertoire des organismes pouvant être retenus pour l'analyse biocénotique contient 152 taxons susceptibles (ANNEXE 6) de participer à la variété totale dont 38 qui constituent neuf groupes faunistiques indicateurs (ANNEXE 5). Les macroinvertébrés ont été déterminés à l'aide d'ouvrages (Tachet et al., 2002 ; Tachet et al., 2006) et de logiciels spécifiques (DIREN Auvergne, 2009). L'unité taxinomique retenue sont la famille et le genre (en fonction des taxons).

c. Dénombrement

La norme n'impose pas le dénombrement de la faune triée, si ce n'est pour les groupes indicateurs dont la présence n'est significative qu'à partir de 3 individus, exceptés pour certains, qui doivent être représentés par au moins 10 individus. Pour cette raison, il est fortement conseillé de compter les individus jusqu'à 10 unités. Il s'avère, dans la pratique, que ce type

d'estimation est souvent insuffisant pour une interprétation correcte des résultats. Un dénombrement total a donc été réalisé.

4. Analyse faunistique

Une liste faunistique globale pour l'ensemble des prélèvements d'une même station est suffisante pour déterminer la valeur de l'indice. Celle-ci comportera la valeur de l'indice calculé, le numéro du groupe indicateur retenu (GI = 1 à 9), le nombre de taxons et la classe de variété correspondante (de 1 à 14).

a. Détermination de l'indice

Elle est établie à partir d'un tableau d'analyse comprenant en ordonnée les 9 groupes faunistiques indicateurs et en abscisse les 14 classes de variété taxinomique. On déterminera successivement :

- La variété taxinomique de l'échantillon, égale au nombre total de taxons récoltés même s'ils ne sont représentés que par un seul individu.
- O Le groupe faunistique indicateur (GI) en ne prenant en compte que les taxons indicateurs représentés dans les échantillons par au moins 3 individus ou 10 individus selon les taxons. La détermination du GI s'effectue en prospectant l'ordonnée du tableau de haut en bas (GI 9 à GI 1) et en arrêtant l'examen à la première présence significative (n ≥ 3 individus ou n ≥ 10 individus) d'un taxon du répertoire en ordonnée du tableau.
- On en déduit la note indicielle du tableau à partir de son ordonnée (GI) et de son abscisse (Σ t). Par exemple :
 - Si GI = 8 et t = 33 alors IBG-DCE = 17
 - Si GI = 5 et t = 30 alors IBG-DCE = 13

b. Procès-verbal de l'essai

Le procès-verbal de l'essai doit comporter au minimum :

- o Une description de la station d'étude,
- o Le tableau de protocole d'échantillonnage rempli,
- o La liste faunistique établie comportant les résultats d'analyse.

Ce procès-verbal sera complété par une interprétation des résultats.

c. Correspondance note - couleur

La relation entre la note de l'indice et la qualité biologique de l'eau analysée est représentée par une couleur. Cette correspondance est définie dans le Tableau I.

Tableau I. Relation entre la note de l'Indice et la qualité de l'eau analysée. Source : Ministère de l'Environnement et al., 1995.

≥ 17	16 - 13	12 - 9	8 - 5	≤ 4
Eau de très	Eau de bonne	Eau de qualité	Eau de qualité	Eau de mauvaise
bonne qualité	qualité	moyenne	médiocre	qualité

d. Traitement de données

Un traitement de données complémentaire au calcul de l'indice est également proposé dans cette étude :

o Calcul de la densité de macro-invertébrés benthiques

Sachant que la surface de prélèvement d'un filet Surber est de 1/20 m², soit 0,05 m², et que le nombre de points de prélèvements par station est de 12 alors la surface totale échantillonnée est de :

$$0.05 \times 8 = 0.4 \text{ m}^2$$

La densité de macro-invertébrés benthiques par station échantillonnée est donc définie par la formule suivante :

Effectif total
$$/ 0.4$$
 (en m²) = Densité (en individus par m²)

Structure des peuplements

Les pourcentages relatifs de chaque groupe étudié seront calculés, par station, de la manière suivante :

(Nb individus du groupe / Nb individus total) x 100 = Pourcentage relatif du groupe

III. PERIMETRE DE L'ETUDE

1. Géologie

Le site de l'ISDND et de la déchetterie de Teperella sont situés sur la commune de Viggianello (Corse-du-Sud) au lieu-dit Jena-di-Pino.

D'un point de vue géologique, la zone étudiée fait partie de la Corse occidentale dite ancienne ou hercynienne (Figure 3) qui couvre environ les 2/3 de la superficie de la Corse et qui comporte de nombreux sommets granitiques qui dépassent 2000 m (ex. Monte Cinto, Monte Rotondo). En effet, la Corse est divisée en deux grandes entités géologiques, la Corse ancienne à l'ouest et la Corse alpine à l'est, bordée par la plaine orientale et séparée de la Corse ancienne par la dépression centrale ou « sillon de Corte » qui s'étend de l'Île-Rousse à Solenzara (Bournérias *et al.*,1990). La carte géologique permet d'avoir une idée du contexte géologique de la région et met en exergue une zone constituée par des roches granitiques hercyniennes (granitoïdes porphyroïdes, Monzogranites grain fin à moyen, granodiorites à macrocristaux..).

Les échantillonnages ont été réalisés en Juin et Octobre 2018 (périodes printanière et automnale) sur le Rizzanese, fleuve côtier situé au Sud-ouest de la Corse. Il prend sa source à la Bocca d'Asinao, dans le massif de l'Incudine, située à 2 128 mètres d'altitude, sur la commune de Zonza, dans la Corse Hercynienne granitique. Il mesure 44,1 km de long. Le bassin versant du Rizzanese est situé dans le prolongement Nord-est du golfe du Valinco, dans la région de l'Alta-Rocca, entre le bassin versant du Taravo et celui de l'Ortolo (Service d'Administration Nationale des Données et Référentiels sur l'Eau, 2009). Il se jette dans le golfe du Valinco, en Méditerranée occidentale, au Sud de la ville de Propriano.

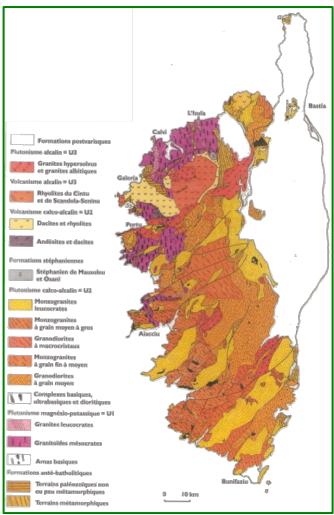


Figure 3. Carte géologique de la Corse (Gautier, 2002).

Le régime hydrologique du Rizzanese est de type « pluvial méditerranéen ». Le débit du Rizzanese est régulé par l'existence d'un barrage exploité par EDF. Le barrage du Rizzanese assure en particulier un rôle important d'écrêteur de crues. Néanmoins l'existence de ces ouvrages n'exclut pas l'occurrence de crues exceptionnelles (Préfecture de Corse, 1999).

Depuis le 17 juin 2013, le barrage construit sur le Rizzanese et exploité par EDF, est entré en fonction. Avec ses 60 mètres d'épaisseur en fondation, pour 41 mètres de hauteur, et 140 mètres de longueur de crête, l'aménagement hydroélectrique du Rizzanese est le plus grand ouvrage jamais construit en Corse et constitue le quatrième grand aménagement hydroélectrique EDF en Corse. La retenue d'eau, située sur les communes de Levie et de Sorbollano, occupe une superficie de 11 ha environ et a une capacité totale de 1 300 000 m3, pour une capacité utile de 1 000 000 m3.

La chute hydroélectrique du Rizzanese est la plus puissante de Corse. Elle augmente de près de

40% la capacité de production hydraulique du territoire. Elle représente, en période de pointe (de 9h à 13h et de 17h à 22h), l'équivalent des besoins d'une agglomération de 60 000 habitants comme Bastia ou Ajaccio. L'ensemble de cette chute hydroélectrique a une puissance installée de 55 MW (SEI/EDF, 2015).

2. Hydrologie

a. Printemps 2018

Le mois de juin est globalement doux et bien arrosé. Ce mois est pluvio-orageux sauf au Cap Corse, peu venté, normalement ensoleillé avec des températures douces pour la saison. Les orages locaux sont fréquents.

Au niveau des précipitations, les cumuls mensuels sont assez contrastés du fait d'averses locales mais demeurent globalement bien excédentaires.

Les températures moyennes sont douces pour la saison notamment à proximité du littoral. Par contre, elles sont inférieures à la normale en montagne

Les cumuls de juin 2018 (Figure 4) sont contrastés. Les plus importants, jusqu'à 200 mm, ont été relevés sur les chaînes montagneuses.

Les rapports à la normale de juin : Les cumuls mensuels sont très majoritairement excédentaires. Ils représentent jusqu'à 2 à 3 fois la normale dans la Corse du Sud et le relief de la Haute-Corse.

L'ensemble des cours d'eau affichent des débits moyens en tendance humide. Ils sont exceptionnellement humide sur l'Ortolo, atteignent la vicennale humide sur le Tavignano à Antisanti et le Fango. La décennale humide est dépassée sur le Fium'Altu, le Porto, la Gravona et le Taravo ; le Bevinco et la Solenzara s'en approchent. Les débits d'étiage affichent des valeurs souvent plus humides que les débits moyens.

La situation hydrique des nappes de la région au 30 juin est tout à fait favorable avec des niveaux supérieurs voire très supérieurs à la normale partout. De nouveaux apports ont eu lieu sur les massifs assurant la poursuite de la recharge des aquifères et retardant le début de la phase de vidange. Dans certains secteurs qui n'ont pas bénéficié d'apports courant juin, la vidange des aquifères a débuté. C'est le cas dans le Cap-Corse et l'Extrême Sud. Les niveaux se maintiennent néanmoins hauts pour la saison.

Concernant les barrages EDF, ils sont majoritairement pleins ou proches du maximum, sauf le Rizzanese qui est à son minimum. Il y a une légère amélioration comparativement à 2017 où le

barrage était très en-dessous de la moyenne au mois au mois de juin 2017. Les retenues OEHC sont également toutes pleines sauf le barrage de Peri en plaine orientale.

L'ensemble des débits moyens des cours d'eau instrumentés sont en tendance humide. Ils sont exceptionnellement humides sur l'Ortolo, atteignent la vicenale humide sur le Tavignano à Antisanti et le Fango. La décennale humide est dépassée sur le Fium'Altu, le Porto, la Gravona et le Taravo ; le Bevinco et la Solenzara s'en approchent. Les débits d'étiage affichent des valeurs souvent plus humides que les débits moyens (DREAL Corse, 2018 et Meteo France, 2018).

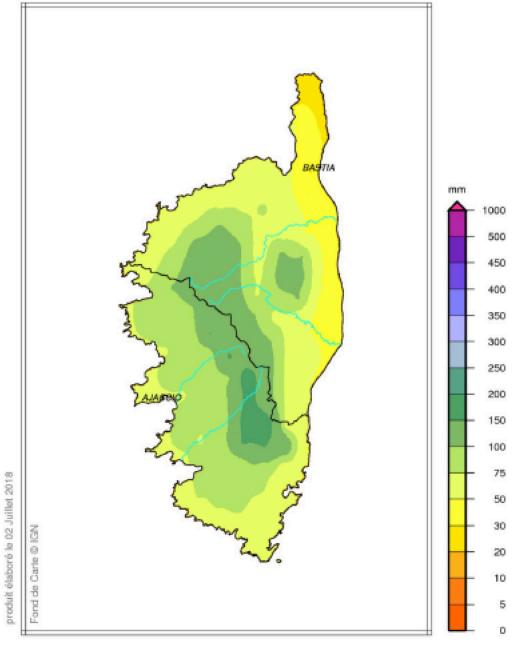


Figure 4. Cumul de précipitations en Corse, juin 2018. Source : DREAL Corse, Service Biodiversité, Eau et Paysage, 2018

b. Automne 2018

Après un été des chaud et sec assez prolongé, les pluies sont de retour en force. Cet automne, la douceur prédomine encore dans un contexte pourtant nuageux notamment dans la seconde quinzaine.

Au niveau des précipitations, les cumuls mensuels sont partout excédentaires mais assez disparates, moins important en Corse-du-Sud.

Les températures sont supérieures à la normale sur la majeure partie de l'île, particulièrement dans la Cinarca. L'ensoleillement est excédentaire par rapport à la normale côté nord de l'île tandis qu'il est déficitaire côté sud (Ajaccio).

Il a beaucoup plu à partir de mi-octobre. Les cumuls sont parfois très abondants et peuvent atteindre jusqu'à 450 mm en Castagniccia et dans le centre montagneux de l'île.

En ce qui concerne les rapports à la normale d'octobre : les cumuls mensuels sont excédentaires presque partout (sauf à l'extrémité méridionale de l'île où ils sont conformes) et peuvent atteindre jusqu'à 3 à 5 fois la normale à l'est du mont San Petrone.

Les écoulements à la fin octobre se situent majoritairement en occurrence humide. On relève des débits exceptionnellement humides sur le Bevinco, l'Asco, le Fium'Alto et la Bravone. Deux épisodes de crue de faible intensité se sont produits à la mi-octobre et à la fin du mois. La seule crue dépassant la décennale a été relevée sur le Fium'Alto lors de l'événement du 16 au 17 octobre 2018 (crue supérieure à la cinquantennale en débit instantané).

La situation hydrique des nappes de la région au 1^{er} novembre se maintient tout à fait favorable avec des niveaux au moins équivalent à la normale voire supérieurs ou très supérieurs à la normale. Durant ce mois d'octobre, l'île a bénéficié de plusieurs épisodes pluvieux qui ont permis d'amorcer la période de recharge des aquifères de montagne et littoraux dont les niveaux sont donc en hausse. Ainsi, les nappes alluviales côtières suivies dans le Cap-Corse, le Nebbio, la Balagne, la Plaine de la Marana-Casinca, la Plaine orientale et l'Extrême sud ont bénéficié d'apports de plusieurs crues qui se sont produites tout le long du mois tandis que les apports aux nappes alluviales côtières de la façade ouest se sont produits à la fin du mois. La recharge de la nappe du Fium'Orbu a débuté mais la réponse de l'aquifère aux crues de la rivière reste amortie au 31/10.

Le niveau de cette nappe se situe en-dessous de la normale pour octobre (statistiques peu fiables du fait d'une tendance à la baisse observée depuis 2012, mais niveau effectivement bas pour la saison).

Les barrages EDF se situent dans la moyenne. Les retenues de l'OEHC sont toutes au-dessus de la moyenne, celles de l'Alesani, de Bacciana et de l'Ospedale sont pleines (DREAL Corse, 2018 et Meteo France, 2018).

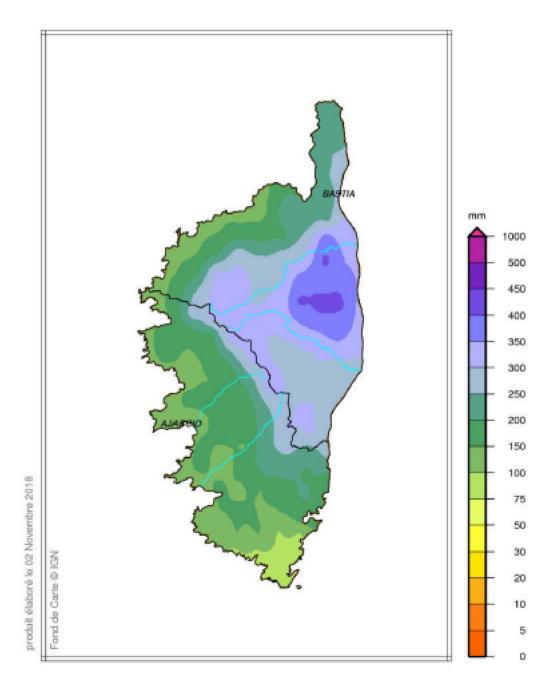


Figure 5. Précipitations relevées en octobre 2018. Source : DREAL Corse, Service Biodiversité, Eau et Paysage, 2018

3. Rejets des collectivités

L'ISDND de Propriano utilise la technique de lixiviation.

Ces eaux proviennent des eaux de pluie traversant les déchets, elles constituent une charge polluante qui est traitée avant rejet dans le milieu naturel. La forme des casiers de stockage (ou alvéole) et une couche de graviers installée au fond de l'alvéole permettent l'écoulement naturel des lixiviats. Les eaux traitées sont rejetées dans le milieu naturel après traitement et contrôle de leur qualité conformément à la réglementation.

Les eaux pluviales et de ruissellement, qui ne sont pas en contact avec les déchets, sont acheminées vers un bassin de stockage par l'intermédiaire d'un système de fossés. Ce bassin est destiné à la régulation des débits et au contrôle de la qualité des eaux. Les eaux traitées par décantation sont rejetées dans le milieu naturel après contrôle de leur qualité conformément à la réglementation.

Ces rejets d'effluents domestiques traités peuvent influer sur les valeurs de l'indice car ils vont surcharger le milieu en matière organique.

4. Stations échantillonnées

Pour réaliser cette étude hydrobiologique, l'échantillonnage a concerné deux stations (figure 6) localisées sur le Rizzanese dans la région de Propriano. Il a été réalisé en Juin 2018 pour la campagne de printemps et en Octobre 2018 pour celle d'automne. Pour faciliter la compréhension du rapport, ces stations seront dénommées :

- o Station Aval confluence Vetricelli, (St. AvVet) (ANNEXES 1, 3, 4, et 5)
- o Station Amont Pont d'Acoravo (St. AmPA) (ANNEXES 2, 3, 4, et 5)

La Figure 6 présente la localisation des stations sur le Rizzanese :

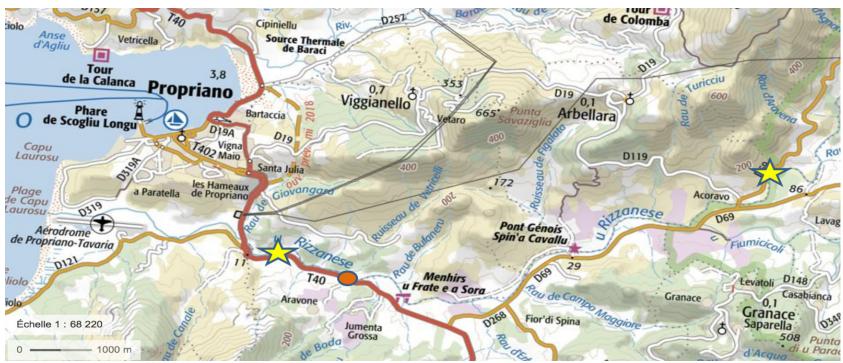


Figure 6. Plan de la zone d'échantillonnage.

Carte IGN avec les stations en Jaune (St. AvVet : Aval Vetricelli, St. AmPA : Amont Pont d'Acoravo) et les rejets d'effluents domestiques traités en orangé (ISDND : Installation de Stockage des Déchets Non Dangereux de Propriano)

III. RÉSULTATS ET INTERPRÉTATIONS

5. Printemps 2018

a. Station Amont

> Couples substrat / vitesse d'écoulement

Le Tableau II présente les couples substrat / vitesse d'écoulement des habitats prospectés à la station Amont Pont Pont d'Acoravo.

Tableau II. Habitats prospectés au niveau de la station Amont Pont d'Acoravo représentés par les couples substrat / vitesse d'écoulement.

VITESSES SUPERFICIELLES v (cm.s ⁻¹) SUPPORTS	v > 150	150 > v > 75	75>V>25	25>V>5	V<5
Bryophytes					
Spermaphytes immergées				 ②	
Eléments organiques grossiers (litière, racines, branchages)				* 3	
Sédiments minéraux de grande taille (pierres, galets) : Ø de 25 mm à 250mm			* 4		
Granulats grossiers : Ø de 2,5 mm à 25 mm			* 5		
Spermaphytes émergeant de la strate basse					
Sédiments fins organiques, vases					★ 6
Sables et limons : \emptyset < 2,5mm					★ ⑦
Surfaces naturelles et artificielles (roches, dalles, sols, parois): Ø > 250mm		★ ⑧			
Algues ou à défaut marnes et argiles	-			_	

Au niveau de la station Amont Pont d'Acoravo, les vitesses d'écoulement sont faibles $(V < 5 \text{ cm.s}^{-1})$ à moyennes/fortes $(25 < V < 150 \text{ cm.s}^{-1})$ mais jamais très élevées excepté en période de crues.

Le tableau III présente les résultats de l'étude hydrobiologique effectuée à la station Amont Pont d'Acoravo. Le taxon indicateur est figuré en rosé.

Tableau III. Caractéristiques indicielles de la station Amont Pont d'Acoravo.

Taxons	Effectif total
PLECOPTERES	
Chloroperlidae	79
Leuctridae	15
TRICHOPTERES	
Brachycentridae	5
Glossosomatidae	9
Hydropsychidae	74
Limnephilidae	3
EPHEMEROPTERES	
Baetidae	103
Caenidae	5
Ephémérellidae	15
Leptophlebiidae	3
Heptageniidae	50
COLEOPTERES	
Dytiscidae	4
Elmidae	3
DIPTERES	
Blephariceridae	25
Ceratopogonidae	13
Chironomidae	10
Simuliidae	33
MOLLUSQUES	
Ancylidae	
Hydrobiidae	12
Effectif total	461
Variété totale	18
classe de variété	6
Groupe indicateur	9
IBGN	14

Pour la station Amont Pont d'Acoravo nous avons inventorié 461 macro-invertébrés benthiques. 18 taxons ont été recensés. Nous avons obtenu une classe de variété de rang 6. Le groupe indicateur de rang 9 (valeur optimale) est représenté par le taxon indicateur (**Chloroperlidae**) le plus polluo-sensible (ANNEXE6). La robustesse de la valeur de l'IBGN est forte nous obtenons un GI de 9 (maximum selon le tableau des valeurs de l'IBGN selon la nature et la variété taxonomique de la macrofaune).

La note indicielle obtenue est de 14 sur 20. Cette note nous permet de qualifier l'eau **de bonne qualité**. La densité de macro-invertébrés benthiques calculée est de 1152 individus/m⁻². Les sédiments minéraux de grandes tailles (galets-blocs) et les surfaces naturelles et artificielles sont les zones de prélèvements les plus biogènes, rassemblant le plus grand nombre de taxons.

La Figure 7 présente la structure des peuplements de macro-invertébrés benthiques pour la station Amont Pont d'Acoravo.

Structure des peuplements Station amont Pont d'Acoravo

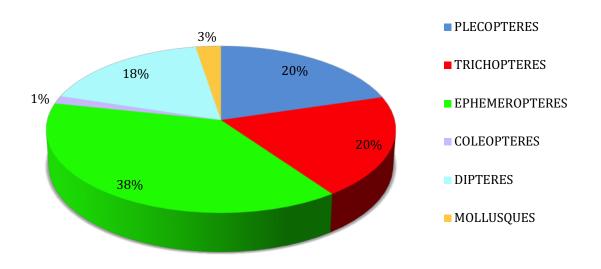


Figure 7. Structure des peuplements de macroinvertébrés benthiques pour la station Amont Pont d'Acoravo Printemps 2018.

La structure des peuplements pour la station Amont Pont d'Acoravo est relativement homogène en ce qui concerne la répartition des 3 groupes de l'ETP (Ephéméroptères-Trichoptères-Plécoptères). Les **Ephéméroptères** sont les macro-invertébrés benthiques les mieux représentés avec 38 % de l'effectif total. Viennent ensuite les **Plécoptères** et les **Trichoptères** avec respectivement 20 % chacun, puis les **Diptères** avec 18%. Enfin , beaucoup plus faiblement représenté les Mollusques avec 3%, les Coléoptères avec 1 %.

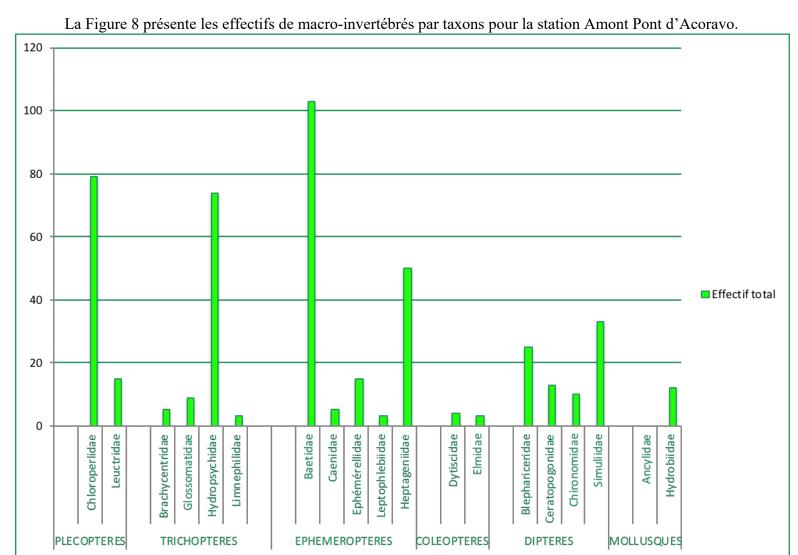


Figure 8. Effectifs par taxons pour la station Amont Pont d'Acoravo Printemps 2018.

Les Ephéméroptères Baetidae sont les mieux représentés avec 103 individus (Figure 8).

Malgré une hauteur d'eau correcte et des vitesses d'écoulement modérées, la présence des **Leptophlebiidae** dans la liste faunistique (même en très petit nombre) est garante d'un très faible colmatage des fonds par les particules fines.

Les trois ordres les plus sensibles Ephéméroptères, Trichoptères et Plécoptères (ETP) à la qualité de l'eau et dont les familles recensées sont caractéristiques des substrats durs sont assez diversifiés mais correctement représentés avec de nombreux taxons identifiés.

Habituellement faiblement représenté, il est important de mettre en exergue l'ordre des Plécoptères caractérisé ici par deux familles polluo-sensibles: les **Chloroperlidae** et les **Leuctridae** (leur GI est respectivement de 9 et 7). La présence de ces familles oxyphiles et très polluo-sensibles permet d'affirmer que le milieu est bien oxygéne. Malgré une certaine anthropisation beaucoup plus en amont, il semblerait que ce cours d'eau parvienne à maintenir un équilibre écologique correct. Ceci se confirme par la présence d'autres familles polluosensibles appartenant au taxon des Trichoptères tels que les **Brachycentridae** qui forment un élément important du benthos des eaux courantes ou les **Glossosomatidae** qui sont également sensibles à une dégradation du milieu.

Le faible nombre de **Chironomidae** sur l'ensemble de notre échantillonnage confirme nos résultats. Cette famille très saprophiles² est peu polluosensible, et se retrouve préférentiellement dans les zones calmes et sur les substrats de type vase et débris végétaux. La présence de ces individus permet de mettre en évidence une courantologie faible ainsi que la présence de matière et débris organiques. Ces animaux, relativement résistants aux pollutions organiques sont souvent caractéristiques des zones polluées et des eaux mal épurées. Toutefois, leur très faible nombre peut traduire le fait que l'eau est exempte de toute pollution.

Les larves rhéophiles de Trichoptères appartenant à la famille des **Hydropsychidae** sont polluo-résistantes. Leur prolifération est souvent le signe d'une charge organique avérée. Leurs adaptations morphologiques confirment ce constat. En effet, les larves appartenant à ce groupe,

¹ Qui a de l'affinité pour l'oxygène.

² Individus vivant dans la matière organique en décomposition (la sapromasse).

sont généralement pourvues d'importantes touffes de longues soies, au niveau du labre, des pattes et des pygopodes. Elles leur permettent de récolter les particules alimentaires retenues par le filet et d'en assurer le nettoyage. Les filets construits par les Hydropsychidae, constituant des pièges à nourriture, sont également une forme d'adaptation à la rhéophilie. La présence dans certains prélèvements de ces organismes filtreurs ainsi que de Diptère **Simuliidae** traduit la présence de débris végétaux. Ces derniers se rencontrent généralement fixés aux cailloux dans les zones rapides grâce à leur ventouse. Cela indique une influence prépondérante de la ripisylve (dépôt de matière organique grossière) et du périphyton³ sur la structure du peuplement. Le développement du périphyton est à mettre en relation avec la quantité de nutriments dans le milieu.

Cette hypothèse est renforcée par la dominance du mode alimentaire de type racleur/broyeur/brouteur chez les groupes taxonomiques recensés. Il traduit la présence de groupes se nourrissant du biofilm se développant à la surface du substrat tels que les Coléoptères (Elmidae), les Trichoptères (Brachycentridae, Glossosomatidae), les Diptères (Blephariceridae) ou certaines familles d'Éphéméroptères (Baetidae, Heptageniidae, Leptophlebiidae). Ils décapent la couche biologique vivante qui recouvrent les macrophytes⁴, arrachant en même temps une partie du support végétal (Stroot *et al.*, 1998 ; Tachet *et al.*, 2002).

Nos résultats mettent également en évidence une corrélation entre les familles de peuplements et les couples « substrat-courant ».

Les groupes **rhéophiles**⁵ (Plécoptères, Trichoptères Brachycentridae, Hydropsychiidae, Éphéméroptères, Coléoptères) se retrouvent principalement dans les zones de courant les plus élevées et bien oxygénées, où ils s'accrochent aux roches. Ces organismes possèdent une quantité d'adaptation spécifique qui leur permet de résister aux vitesses de courant élevées.

En effet, dans les zones les plus torrenticoles, l'intensité du courant, permet une saturation en oxygène dissous, favorable aux animaux aquatiques, mais constitue un facteur écologique contraignant impliquant :

• une adaptation des organismes aquatiques (la *rhéophilie*) à la pression mécanique qu'il exerce sur leur corps : Plécoptères (face dorsale bombée), Trichoptères

³ Couche biologique constituée d'organismes microscopiques, qui se développe à la surface du substrat et des végétaux. Ce sont des microalgues et micro-organismes associés vivant attachés à toute surface immergée.

⁴ Plante aquatique de grande taille.

⁵ Organisme qui aime évoluer dans les zones de courant important, écoulements rapides.

Hydropsychiidae (la larve vit dans un tube retraite flanqué d'un filet à maille régulière ou grille), Éphéméroptères (corps aplati dorso ventralement), Coléoptères, Mollusque Ancylidae.

- Une difficulté de leur maintien sur les rochers immergés et même à la surface du substrat.
- Ainsi qu'une hydrodynamicité du corps.

b. Station Aval

> Couples substrat / vitesse d'écoulement

Le Tableau IV présente les couples substrat / vitesse d'écoulement des habitats prospectés à la station Aval Vetricelli.

Tableau IV. Habitats prospectés au niveau de la station Aval Vetricelli représentés par les couples substrat / vitesse d'écoulement.

VITESSES SUPERFICIELLES v (cm.s ⁻¹) SUPPORTS	v > 150	150>v>75	75>V>25	25>V>5	V<5
Bryophytes					1
Spermaphytes immergées					
Eléments organiques grossiers (litière, racines, branchages)				* 2 * 3	
Sédiments minéraux de grande taille (pierres, galets) : Ø de 25 mm à 250mm			* 4		
Granulats grossiers: Ø de 2,5 mm à 25mm		* (5)			
Spermaphytes émergeant de la strate basse					
Sédiments fins organiques, vases			★ ⑦	★ ⑥	
Sables et limons : \emptyset < 2,5mm				 8	
Surfaces naturelles et artificielles (roches, dalles, sols, parois): ∅>250mm					
Algues ou à défaut marnes et argiles		-		_	

Au niveau de la station Aval Vetricelli, les vitesses d'écoulement sont faibles $(V < 5 \text{ cm.s}^{-1})$ à moyennes $(25 < V < 75 \text{ cm.s}^{-1})$ mais jamais élevées et plus rarement supérieures à ces valeurs.

Le Tableau V présente les résultats de l'indice effectué à la station Aval Vetricelli. Le taxon indicateur est figuré en rosé.

Tableau V. Caractéristiques indicielles de la station Aval Vetricelli.

Taxons	Effectif total
TRICHOPTERES	
Brachycentridae	15
Glossosomatidae	6
Hydropsychidae	3
Limnephilidae	17
EPHEMEROPTERES	
Baetidae	4
Leptophlebiidae	19
Heptageniidae	23
COLEOPTERES	
Dytiscidae	21
Elmidae	4
DIPTERES	
Blephariceridae	2
Ceratopogonidae	31
Chironomidae	36
Simuliidae	2
Tipulidae	32
MOLLUSQUES	
Ancylidae	4
Hydrobiidae	109
Effectif total	328
Variété totale	16
classe de variété	5
Groupe indicateur	8
IBGN	12

Pour la station Aval Vetricelli nous avons inventorié 328 macro-invertébrés benthiques. La richesse taxonomique recensée sur la station est correcte (16 taxons recensés). Nous avons obtenu une classe de variété de rang 5 ainsi qu'un groupe indicateur de rang 8. La note obtenue est de 12 sur 20. La robustesse de l'indice est bonne car celui-ci ne perd qu'un point en l'absence du premier taxon indicateur. Cette note caractérise une eau de qualité moyenne. La densité de macro-invertébrés benthiques calculée est de 820 individus/m⁻².

La Figure 9 présente la structure des peuplements de macro-invertébrés benthiques pour la station Aval Vetricelli.

Structure des peulplements Station Aval Vetricelli

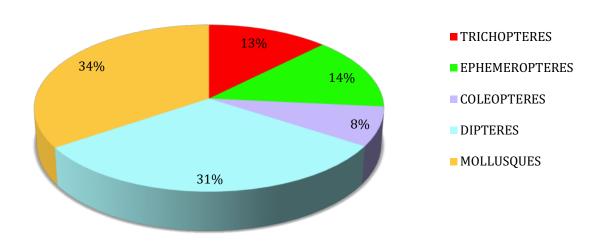


Figure 9. Structure des peuplements de macroinvertébrés benthiques pour la station Aval Vetricelli Printemps 2018.

La structure du peuplement est déséquilibrée en faveur des mollusques avec 34% des individus et des diptères avec 31% de l'effectif total. Ce qui diffère quelque peu de nos précédents de prélèvements dans lesquels les diptères étaient largement sous représentés.

Dans ce prélèvement printanier, les Diptères sont mieux symbolisés, plus diversifiés (5 familles contre 3 en 2017) et assez bien représentés avec 31%. Le nombre d'individus recensés dépassent cette fois le seuil de représentativité (excepté pour pour 2 des 5 familles identifiées (2 **Blepharecidae** racleurs de substrat et 2 **Simuliidae** qui traduisent tout de même l'existence de particules fines en suspension).

Viennent ensuite les Ephéméroptères avec 14 %, les Trichoptères avec 13% et enfin les Coléoptères avec 8%.

La figure 10 présente les effectifs de macro-invertébrés par taxon pour la station Aval Vetricelli.

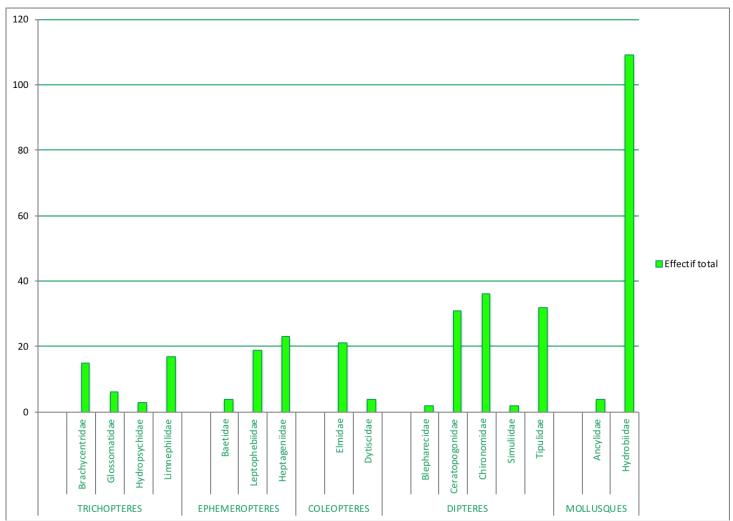


Figure 10. Effectifs par taxon pour la station Aval Vetricelli Printemps 2018.

Les Mollusques sont majoritairement représentés par le gastéropode invasif Potamopyrgusappartenant à la famille des Hydrobiidae. C'est un taxon à large spectre écologique, très peu sensible aux perturbations. Cette abondance ne traduit pas réellement une pollution organique car les individus purement saprophiles sont peu représentés. La présence importante de *Potamopyrgus* indique une influence prépondérante de la ripisylve (matière organique grossière) et du périphyton (base des chaines alimentaires et réseaux trophiques subaquatique) sur la structure du peuplement. Le développement du périphyton serait lié avec la quantité de nutriments dans le milieu. Comme pour la station Amont, cette hypothèse est renforcée par la dominance du mode alimentaire de type racleur/brouteur chez les groupes taxonomiques recensés. Il traduit la présence de groupes se nourrissant du biofilm se développant à la surface du substrat tels que les Coléoptères (Elmidae), les Mollusques (Hydrobiidae ou Ancylidae) ou certaines familles d'Éphéméroptères (Baetidae ou Heptageniidae).

De même, les divers aménagements le long du cours d'eau depuis l'amont, sont susceptibles d'impacter profondément le mode d'écoulement et la nature du substrat, entraînant inévitablement une disparité dans la répartition des espèces.

Notons également la présence :

- des Ceratopogonidae, organismes fouisseurs des biotopes Sables-Graviers,
- des Chironomidae racleurs de substrat, très saprophiles et très polluo-résistants Ces derniers se trouvent préférentiellement dans les zones de faible courantologie et sur les substrats de type vase et débris végétaux ce qui correspond aux habitats prospectés dans cette station. Ils possèdent un appareil buccal légèrement modifié qui leur permet de racler seulement la couche biologique vivante (microflore, microphytes et micro-invertébrés) qui recouvre macrophytes et pierres. Ils avalent en même temps les fins débris organiques et minéraux qui se sont déposés.
- Les **Tipulidae**, organismes fouisseurs et limnophiles, caractéristiques des biotopes à sédiments meubles et recouverts d'eau.

Ces résultats sont caractéristiques de milieux peu diversifiés en terme d'habitats pouvant être, dans notre cas, directement liés à la configuration du cours d'eau. Le Rizzanese posséde au niveau de cette station, un lit large, à pente très faible, principalement constitué de sables, limons, débris organiques... ainsi qu'une vitesse découlement faible à modérée favorisant le developpement de certains taxons par rapport à d'autres.

6. Automne 2018

a. Station Amont

Le Tableau VI présente les couples substrat / vitesse d'écoulement des habitats prospectés à la station Amont.

Tableau VI. Habitats prospectés au niveau de la station Amont Pont d'Acoravo représentés par les couples substrat / vitesse d'écoulement.

VITESSES SUPERFICIELLES v (cm.s ⁻¹) SUPPORTS	v > 150	150 > v > 75	75>V>25	25>V>5	V<5
Bryophytes					
Spermaphytes immergées					
Eléments organiques grossiers (litière, racines, branchages)				*1	
Sédiments minéraux de grande taille (pierres, galets) : Ø de 25 mm à 250 mm		*2	* 3		
Granulats grossiers : Ø de 2,5 mm à 25 mm				* 4	
Spermaphytes émergeant de la strate basse					
Sédiments fins organiques, vases					★ ⑤
Sables et limons : \emptyset < 2,5mm					
Surfaces naturelles et artificielles (roches, dalles, sols, parois) : ∅ > 250 mm		* ®	★ ⑦	* 6	
Algues ou à défaut marnes et argiles					

Au niveau de la station Amont, les vitesses d'écoulement sont assez hétérogènes au regard de la saison avec des vitesses moyennes dans le chenal principal. En revanche, les substrats ne sont pas très diversifiés. Nous retrouvons principalement des substrats de type dalles, blocs et gros galets.

Le Tableau VII présente les résultats de l'indice effectué à la station Amont. Le taxon indicateur est figuré en rosé.

Tableau VII. Caractéristiques indicielles de la station Amont Pont d'Acoravo

Taxons	Effectif total
PLECOPTERES	
Chloroperlidae	68
Leuctridae	4
TRICHOPTERES	
Brachycentridae	24
Glossosomatidae	6
Hydropsychidae	179
Limnephilidae	3
Philopotamidae	3
EPHEMEROPTERES	
Baetidae	96
Caenidae	22
Ephémérellidae	3
Leptophlebiidae	3
Heptageniidae	20
COLEOPTERES	
Dytiscidae	2
Elmidae	3
DIPTERES	
Blephariceridae	3
Ceratopogonidae	8
Chironomidae	6
Simuliidae	10
Tipulidae	2
MOLLUSQUES	
Ancylidae	3
Hydrobiidae	12
Effectif total	480
Variété totale	21
classe de variété	6
Groupe indicateur	9
IBGN	15

Le peuplement de cette station se caractérise par une **importante densité** pour la période (1200 individus/m²). Les sédiments minéraux de grandes tailles (galets-blocs) constituent les habitats rassemblant le plus grand nombre de taxons. Nous retenons les **Chloroperlidae** (GI=8) pour le calcul de l'IBGN, ici égal à **15** et caractéristique d'une eau de bonne qualité. La robustesse de

l'IBGN Amont est très bonne car ce dernier gagne un point comparativement à l'IBGN 2017 à la même période.

La Figure 11 présente la structure des peuplements de macro-invertébrés benthiques pour la station Amont.

Structure des peuplements Station amont Pont d'Acoravo

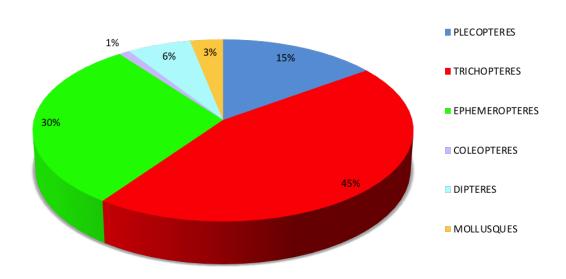


Figure 11. Structure des peuplements de macroinvertébrés benthiques pour la station Amont Pont d'Acoravo Automne 2018.

Au niveau qualitatif, les trois ordres les plus sensibles à la qualité de l'eau et dont les familles recensées sont caractéristiques des substrats durs, à savoir Éphéméroptères, Plécoptères et Trichoptères (EPT), sont assez diversifiés et correctement représentés.

Avec 45% les **Trichoptères** sont les plus représentés comparativement à l'effectif total.

Le 2nd groupe est caractérisé par les **Ephéméroptères** avec 30% et plus particulièrement la famille des **Baetidae**.

Avec 15%, il convient de noter la présence des Plécoptères dont la famille polluo-sensible des **Chloroperlidae**.

Les autres ordres avec des pourcentages de représentativité inférieurs à 10% et selon un ordre décroissant sont respectivement les **Diptères** (6%), **Mollusques** (3%) et Coléoptères (1%).

Comme pour la campagne de printemps 2018, nous retrouvons les mêmes 3 familles dominantes : Les **Chloroperlidae** appartenant au groupe des Plécoptères, les **Hydropsychidae** appartenant au groupe des Trichoptères, et les **Baetidae** appartenant au groupe des Ephémérotpères.

La figure 12 montre cependant un différentiel au niveau du nombre d'individus. Notons comparativement à la campagne de juin 2018 :

- une diminution de l'effectif de Chloroperlidae,
- Une augmentation significative de l'effectif des **Hydropsychidae**, organismes rhéophiles des substrats durs, filtreurs et plutôt polluo-résistants,
- Une légère augmentation de l'effectif des **Baetidae**, qui comme le groupe précédent est plutôt peu polluo-sensible.

Ces résultats suggèrent une une infime perturbation du milieu mais avec globalement, une qualité hydrobiologique bonne : IBGN de 15 a été obtenu et les Chloroperlidae, espèces polluo-sensibles sont malgré une légère baisse, représentés avec un GI=9. Les faibles effectifs de Diptères (Chironomidae : 6 individus) polluo-résistants et très saprophiles ou de Coleoptères (Elmidae : 3 individus) confirment ces observations.

Nos résultats mettent également en évidence une corrélation obtenue lors de nos prélèvements entre les familles de peuplements et les couples « substrat-courant ».

Dans les zones bien oxygénées, l'intensité du courant implique des adaptations morphologiques des organismes dulçaquicoles à la rhéophilie (Plécoptères, Trichoptères Hydropsychiidae, Éphéméroptères, Coléoptères, Mollusque Ancylidae) leur permettant notamment de s'accrocher aux roches tandis que les groupes limnophiles se retrouvent essentiellement dans les zones calmes à courantologie faible (Chironomidae).

La Figure 12 présente les effectifs de macro-invertébrés par taxon pour la station Amont Pont d'Acoravo

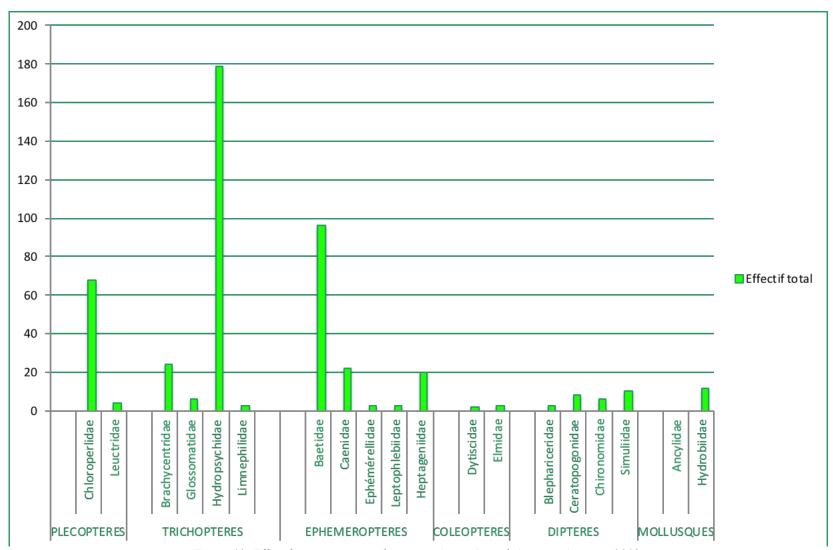


Figure 12. Effectifs par taxon pour la station Amont Pont d'Acoravo Automne 2018.

b. Station Aval

Le Tableau VIII présente les couples substrat / vitesse d'écoulement des habitats prospectés à la station Aval.

Tableau VIII. Habitats prospectés au niveau de la station Aval Vetricelli représentés par les couples substrat / vitesse d'écoulement.

VITESSES SUPERFICIELLES v (cm.s ⁻¹) SUPPORTS	v > 150	150 > v > 75	75>V>25	25> V > 5	V<5
Bryophytes					
Spermaphytes immergées					
Eléments organiques grossiers (litière, racines, branchages)			* ②	* 3	
Sédiments minéraux de grande taille (pierres, galets) : Ø de 25 mm à 250 mm				* 4	
Granulats grossiers : Ø de 2,5 mm à 25 mm		S *			
Spermaphytes émergeant de la strate basse					
Sédiments fins organiques, vases				★ 6	
Sables et limons : \emptyset < 2,5mm			★ ⑦		
Surfaces naturelles et artificielles (roches, dalles, sols, parois) : $\varnothing > 250$ mm			* 8		
Algues ou à défaut marnes et argiles					

Au niveau de la station Aval Vetricelli, les substrats sont hétérogènes au regard de l'hydromorphologie du cours d'eau avec une dominante pour des vitesses d'écoulement moyennes.

Le Tableau IX présente les résultats de l'indice effectué à la station Aval. Le taxon indicateur est figuré en rosé.

Tableau IX. Caractéristiques indicielles de la station Aval Vetricelli.

Taxons	Effectif total
TRICHOPTERES	
Brachycentridae	2
Glossosomatidae	5
Hydropsychidae	3
Limnephilidae	26
EPHEMEROPTERES	
Baetidae	32
Leptophlebiidae	3
Heptageniidae	9
COLEOPTERES	
Dytiscidae	4
Elmidae	39
DIPTERES	
Blephariceridae	1
Ceratopogonidae	15
Chironomidae	47
Simuliidae	4
Tipulidae	12
MOLLUSQUES	
Hydrobiidae	112
Effectif total	314
Variété totale	15
classe de variété	5
Groupe indicateur	7
<mark>IBGN</mark>	11

Le peuplement de cette station se caractérise par une **densité** 785 individus/m². Les sédiments fins, sables... constituent les habitats rassemblant le plus grand nombre de taxons. Nous retenons les **Glossosomatidae** (GI=7) pour le calcul de l'IBGN, ici égal à **12** et caractéristique d'une eau de qualité moyenne. La robustesse de l'IBGN Amont est moyenne car celui-ci perd 1 point en l'absence du taxon indicateur comparativement à la campagne 2017 à la même période (Philopotamidae, GI=8 avaient été retenus) et à celle du Printemps 2018 (Brachycentridae, GI=8).

Structure des peulplements Station Aval Vetricelli

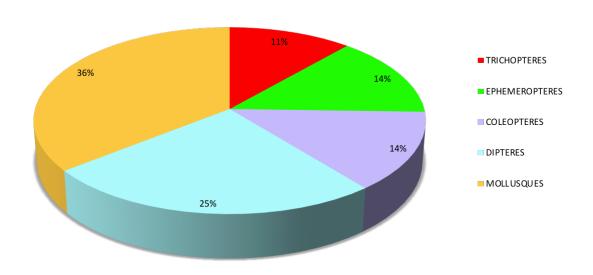


Figure 13. Structure des peuplements de macroinvertébrés benthiques pour la station Aval Vetricelli Automne 2018.

La Figure 13 présente une structure des peuplements de macro-invertébrés benthiques pour la station Aval Vetricelli hétérogène et en faveur des **Mollusques** (36%) et des **Diptères** (25%). Ils sont ensuite suivis par les **Éphéméroptères** et les **Coléoptères** avec respectivement (14%). La proportion de Trichoptères identifés est minoritaire dans cette structure des peuplements. Elle reste cependant caractéristique d'un biotope de potamon.

La figure 14 présente les effectifs de macro-invertébrés par taxon pour la station Aval Vetricelli et traduit une situation écologique différente de la campagne de printemps.

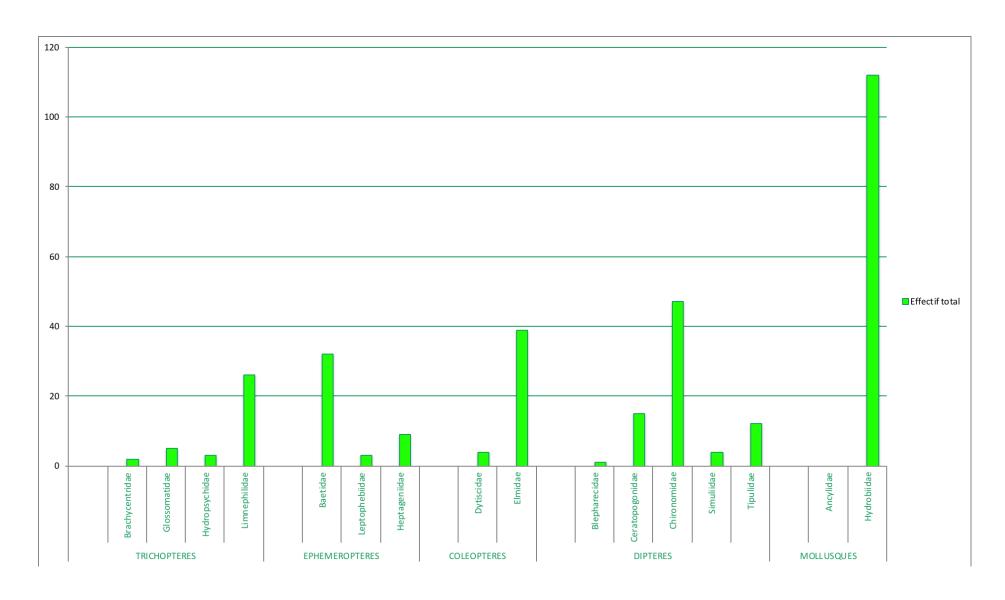


Figure 14. Effectifs par taxon pour la station Aval Vetricelli Automne 2018.

Les **Trichoptères** sont représentés par quatre familles. Nous les avons principalement identifiés dans les zones de courantologie moyenne à l'exception de la famille des **Limnephilidae caractéristique des zones calmes.** Bien qu'à effectif faible, la présence de famille de filtreurs (**Hydropsychidae**) traduit l'existence de débris fins et de particules fines en suspension. L'infime présence du Trichoptère **Brachycentridae** (seuls 2 individus), taxon exigeant vis-à-vis de certains paramètres abiotiques tels que l'oxygène dissous ou la température, matières en suspension, met en exergue une signification écologique marquée. Notons également la disparition totale des **Plécoptères**. Cette diminition d'effectif peut s'expliquer par une variation de l'hydromorphologie du cours d'eau. En effet, juste après la station amont, le cours d'eau tend à s'élargir et la pente s'adoucit. L'ensoleillement est également important et la courantologie s'affaiblit par endroit. Une diminiution de la pente, de la vitesse du courant ainsi que l'appartion de nouveaux types de substrat (petits galets, graviers, sables...) constituent des conditions de milieu qui sont plus défavorables au développement de certaines espèces rhéophiles caractérisant la majorité des Plécoptères.

Les familles **d'Éphéméroptères** se retrouvent en faible proportion et les genres identifiés sont également rhéophiles, rencontrées dans les zones de courantologie moyennent élevées. La présence de l'Éphéméroptère **Baetidae** (bien représentée et très peu sensible aux perturbations) traduit la présence d'un milieu riche en matière organique à différents stades de dégradation (accumulation de débris végétaux en décomposition au fond du cours d'eau). Ces organismes brouteurs décapent la couche biologique vivante qui recouvrent les macrophytes, arrachant en même temps une partie du support végétal.

Les **Coléoptères** sont représentés par deux familles dont une (Elmidae) sui est polluorésistante.

Les **Diptères** sont représentés par cinq familles dont 3 limnopohiles (**Ceratopogonidae** et **Chironomidae**, **Tipulidae**) identifiées dans des zones calmes où l'intensité du courant est faible à nulle et sur les substrats de type vase et débris végétaux. Parmi ces trois familles, notons un effectif d'individus prépondérant chez les **Chironomidae** plutôt saprophiles et peu polluosensible. La présence des Chironomidae, affectionnant les substrats de types débris végétaux, confirme l'enrichissement en matière organique. La présence de ces débris (liée au manque de vitesse dans la zone de prélèvement) met en évidence une dominance du mode alimentaire de type broyeurs/racleurs.

Le facteur limitant au développement de la macrofaune benthique n'est pas lié à la qualité de l'eau mais certainement à la qualité des habitats. Des conditions hydrologiques très contraignantes (niveaux d'eau bas, faible débit), ainsi qu'une mauvaise hospitalité des habitats pour la macrofaune benthique entraine une note IBGN moyenne.

Les familles les plus polluo-sensibles à la qualité de l'eau (ETP) ne sont plus représentées ou faiblement. Cela peut traduire une perturbation de l'équilibre du cours d'eau. Toutefois, la présence des Brachycentridae (même en petit nombre) indique que le milieu est préservé de toute pollution et que le développement de la matière organique est limité aux dépôts végétaux issus de la ripisylve. Ici les organismes se nourrissent de la matière organique grossière apportée par la ripisylve (feuilles mortes) et du périphyton, essentiellement constitué de champignons, de bactéries et de la matière organique déposée. Le développement du périphyton est à mettre en relation avec la quantité de nutriments dans le milieu.

V. CONCLUSION

Les Tableau X et XI présentent les différentes caractéristiques (Note, densité...) comparées entre les deux stations de prélèvement. Les signes 7 (augmentation), 4 (diminution) et = (égalité) présentent les évolutions de chaque paramètre le long du continuum fluvial (pour une station donnée et par rapport à la station précédente).

1. Printemps 2018

Tableau X. Table IBGN Printemps 2018.

Station	Amont Pont d'Acoravo	Aval Vetricelli
Valeur de l'indice	14	12
		Я
Densité (individus.m ⁻²)	461	328
,		Я
Groupe indicateur	9	8
Groupe malcateur	9	Я
Classe de variété	6	5
Classe de Variete	O	Я
Taxons	18	16
1 axons	10	Я

En amont, la note de 14/20 correspond à une eau de bonne qualité et la station aval présente une eau de qualité moyenne (12/20) en raison principalement d'un débit lent et d'une courantologie très peu rhéophile malgré des conditions climatiques et hydrologiques favorables le mois précédent (mai exceptionnellement arrosé pour la saison avec des petits orages fréquents et des températures relativement douces).

À l'aval de la confluence avec le Vetricelli, la note, le groupe indicateur ainsi que la classe de variété diminuent. On passe d'une eau de bonne qualité biologique à une eau de qualité moyenne. Cette transition se traduit par une chute du nombre de taxons, donc de la classe de variété.

La densité d'individus au mètre carré diminue également entre les deux stations, de l'amont vers l'aval. Le groupe indicateur chute, et perd un point (9 => 8) entre les stations Amont Pont d'Acoravo et Aval Vetricelli tout comme la classe de variété qui passe de 6 à 5.

L'ensemble de ces critères ainsi que la perte de 2 points sur la note IBGN entre l'amont et l'aval peut s'expliquer par une modification hydromorphologique du cours d'eau (pente plus faible, ensoleillement plus important, zone calmes) limitant de manière « naturelle » la diversité taxonomique. En effet, le long du continuum fluvial prospecté, on note une diminution progressive du nombre de taxons rhéophiles typique des « rapides » de l'amont vers l'aval, ainsi que des espèces très polluosensibles (Plécoptères). Ces résultats sont corrélés avec la répartition des différents habitats rocheux et dalleux qui ont aussi tendance à régresser à mesure que l'on se rapproche de l'estuaire (ANNEXE 7). Ceci, au profit de taxons limnophiles et plutôt polluorésistants affectionnant les zones plus calmes et les biotopes plus riches en matière organiques.

Il est nécessaire de préciser que les prélèvements Aval Vetricelli ont été effectués en aval de la zone industrielle de Propriano, ainsi que de l'ISDND. De potentiels rejets d'eaux usées (zone d'activité), mais aussi la présence d'un arrêtoir et d'enrochements (en aval de Spin A cavallu) ont pu modifier le profil hydromorphologique du cours d'eau et donc influer sur les communautés d'invertébrés benthiques le long du continuum fluvial prospecté.

2. Automne 2018

Tableau XI. Table IBGN Automne 2018.

Station	Amont Pont D'Acoravo	Aval Vetricelli
Valeur de l'indice	15	ה 11
Densité (individus.m ⁻²)	480	314 丛
Groupe indicateur	9	7 ע
Classe de variété	6	5 2
Taxons	21	15 \(\mu\)

En amont, la note de 15/20 correspond à une eau de bonne qualité malgré des conditions climatiques et hydrologiques peu favorables le mois précédent. La station aval présente une eau de qualité moyenne (11/20) en raison principalement d'un débit lent et d'une courantologie très peu rhéophile excepté à certains endroits (rares). Les conditions climatiques et hydrologiques du mois précédent non pas amélioré les conditions de ce milieu déjà enclin à un socle de des contraintes abiotiques peu favorables (mois de septembre estival après un été déjà bien chaud. Les températures sont douces et le soleil règne en maître dans un contexte plutôt sec et relativement peu venté). La vitesse de courant est ici déterminante car elle conditionne le transport des nutriments, le renouvellement de l'oxygène et la dérive d'une partie de la nourriture. Le faible débit du ruisseau conditionne également le type d'organismes observés. Les fortes températures estivales et la réduction des débits traduisent l'allongement de la durée de l'assèchement des cours d'eau, la destruction de certains biotopes entrainant des variations dans la composition faunistique.

Nous avons également noté une diminution du dioxygène dissous par rapport aux prélèvements précédents. Ceci s'explique par le fait que la décomposition des débris végétaux en consomme beaucoup et qu'il n'y a pas de remous qui permettraient de le renouveler. Cet appauvrissement est également à mettre en lien avec l'augmentation de la température des eaux (effet physique). Les masses d'eau sont vulnérables aux effets des changements environnementaux. Il est nécessaire d'observer et d'évaluer à l'échelle des changements climatiques globaux. Il importe d'assurer un suivi régulier de ces écosystèmes.

La perte de 4 points sur la note IBGN entre l'amont et l'aval peut s'expliquer par une modification de la morphologie du cours d'eau (pente quasi nulle, ensoleillement plus important, zones calmes prépondérantes) limitant de manière « naturelle » la diversité taxonomique. En effet, le long du continuum fluvial prospecté, on note une diminution progressive du nombre (moins 6 taxons entre l'mont et l'aval) de taxons rhéophiles (affinité pour l'intensité forte du courant) selon un flux hydrique évoluant de la source à l'estuaire, ainsi que des espèces non polluo-résistantes (Plécoptères). Ceci, au profit de taxons limnophiles et non polluo-sensibles affectionnant les zones à faible courantologie et les milieux enrichis en débris organiques.

À l'aval de la confluence avec le Vetricelli, la note, le groupe indicateur ainsi que la classe de variété diminuent. On passe d'une eau de bonne qualité biologique à une eau de qualité moyenne. Cette transition se traduit une chute du nombre de taxons, donc de la classe de variété. La densité d'individus au mètre carré diminue également entre les deux stations, de l'amont vers l'aval. Le groupe indicateur chute, et perd 2 points (9 => 7) entre les stations Amont Pont d'Acoravo et Aval Vetricelli et la classe de variété passe de 6 à 5. Après un été chaud et très sec, les mois de septembre et octobre ont présenté des températures relativement élevées ainsi qu'un déficit de pluviométrie important sur notre région. La durée d'ensoleillement (septembre) a été excédentaire de 11% avec une valeur record de 278 heures et les cumuls mensuels des précipitations globalement déficitaires de 47 % aggravant encore l'état de sécheresse et faisant souffrir également les biocénoses animales et végétales aquatiques.

La présence d'un arrêtoir et d'enrochements (en aval de Spin A cavallu) ont pu impacter le profil hydromorphologique du cours d'eau, les conditions de courantologie et donc influer sur la distribution des communautés d'invertébrés benthiques le long du continuum fluvial prospecté. De plus, les prélèvements Aval Vetricelli étant effectués en aval de la zone industrielle de Propriano avec de potentiels rejets d'eaux usées (issus de la zone d'activités), ainsi que de l'ISDND à proximité sont autant de raisons qui sont susceptibles d'expliquer cette note moyenne de l'IBGN. Les très faibles précipitations de début octobre sont demeurées insuffisantes pour rétablir l'équilibre hydrologique du cours d'eau surtout en aval.

Sachant qu'il faudra compter entre un et deux mois après la remise en eau totale du lit mineur pour que la macrofaune benthique recolonise le milieu, nous préconisons de réaliser une étude de peuplement en début de printemps (mars) afin de s'assurer que les colonies de macroinvertébrés benthiques se sont reconstituées normalement à l'aval.

BIBLIOGRAPHIE

OUVRAGES ET PUBLICATIONS

BOURNERIAS M., POMEROL C., TURQUIER Y. 1990. La Corse. Guide Naturaliste des côtes de France, La Corse. Tome 7. Editions Delachaux & Niestlé. Paris, 248p.

GAUTHIER A. 2002. La Corse : une île montagne au cœur de la Méditerranée, Editions Delachaux & Nieslté, Paris, 320p.

GENIN B., CHAUVIN C, MENARD F. 2003. Cours d'eau et indices biologiques : pollutions, méthodes, IBGN. 2ème édidtion. Éd. Éducagri, Dijon, 134p.

MINISTERE DE L'ECOLOGIE ET DU DEVELOPPEMENT DURABLE. 2007. Circulaire DCE 2007/22 du 11 avril 2007 relative au protocole de prélèvement et de traitement des échantillons des invertébrés pour la mise en oeuvre du programme de surveillance sur cours d'eau. 23p.

STROOT P., TACHET H., DOLÉDEC S. 1988. Les larves d'*Ecnomus tenellus* et d'*E. deceptor* (Trichoptera, Ecnomidae) : identification, biologie et écologie. *Bijdraegen tot de Dierkunde* 58, 259-269.

TACHET H., BOURNAUD. M, RICHOUX P. 2002. "Introduction à l'étude des macroinvertébrés des eaux douces (Systématique élémentaire et aperçu écologique)", Université de Lyon 1, Association Française de Limnologie, Villeurbanne, 156p.

TACHET H., RICHOUX P., BOURNAUD M., USSEGLIO-POLATERA P. 2006. "Invertébrés d'eau douce. Systématique, biologie, écologie", CNRS Éditions, Paris, ISBN 978-2-271-05745-7, 592p.

RESSOURCES EN LIGNE

DIREN AUVERGNE. 2009. "Base de données PERLA v2 : Détermination des invertébrés d'eau douce", URL : http://www.perla.ecologie.gouv.fr/accueil.asp.

DREAL Corse, Service Biodiversité, Eau et Paysage "Situation hydroclimatologique en Corse pour le mois de Juin 2018" 33p., URL : http://www.corse.developpement-durable.gouv.fr/, 1 juillet 2018.

DREAL Corse, Service Biodiversité, Eau et Paysage "Situation hydroclimatologique en Corse pour le mois de Octobre 2018" 33p., URL : http://www.corse.developpement-durable.gouv.fr/,

1 Novembre 2018.

METEO FRANCE. "Bulletin climatique" pdf. 4.p. JUIN 2018

METEO FRANCE. "Bulletin climatique" pdf. 4.p. OCTOBRE 2018

SERVICE D'ADMINISTRATION NATIONALE DES DONNEES ET REFERENTIELS SUR L'EAU. 2009. "Fiche fleuve : rizzanese",

URL: http://sandre.eaufrance.fr/app/chainage/courdo/htm/Y84-0400.php?cg=Y84-0400.

SYSTEME D'INFORMATION SUR L'EAU DU BASSIN CORSE. 2009. "Les stations d'épuration de la Corse-du-Sud", URL: http://www.corse.eaufrance.fr/rejets-collectivites/stations-epuration.php?dept=2A.

SYSTEMES ÉLECTRIQUES INSULAIRES / EDF. 2015. "Sûreté hydraulique en Corse", URL : http://sei.edf.fr/accueil/accueil/corse-collectivites-offres-et-services/informations-et-tarifs/surete-hydraulique-en-corse-602845.html

ANNEXES

ANNEXE 1 CARTE DE LOCALISATION GOOGLE EARTH 2018ET PHOTOGRAPHIE : STATION AVAL VETRICELLI



ANNEXE 2

<u>CARTE DE LOCALISATION GOOGLE EARTH 2018 ET PHOTOGRAPHIE :</u> <u>STATION AMONT PONT D'ACORAVO</u>

ANNEXE 3

FICHES TECHNIQUES DES STATIONS

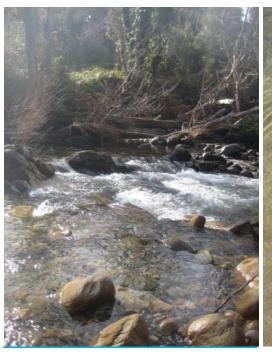
FICHE STATION JUIN 2018

Cours d'eau	Date de prélèvement	Longueur totale (prospectée)	Largeur moyenne mouillée
Rizzanese	18/06/2018	55 m (St.Av.Vet)	5 m (St.Av.Vet)
Rizzanese	18/06/2018	149 m (St. Am.PA)	13,5 m (St. Am.PA)

Code	Station	Coordonnées	Coordonnées
Station		GPS aval	GPS amont
St. Am.PA	Amont pont	41°39'50.11"N	41°39'49.95"N
	d'Acoravo	9° 0'44.41"E	9° 0'50.46"E
St.Av.Vet	Aval Vetricelli	41°39′6.71"N 8°56′13.95"E	41°39'5.98"N 8° 56'15.40"E

Situation hydrologique apparente	Eaux descendantes
Tendance hydologique des jours précédents	Stable
Visibilité du fond	Bonne
Remarques	

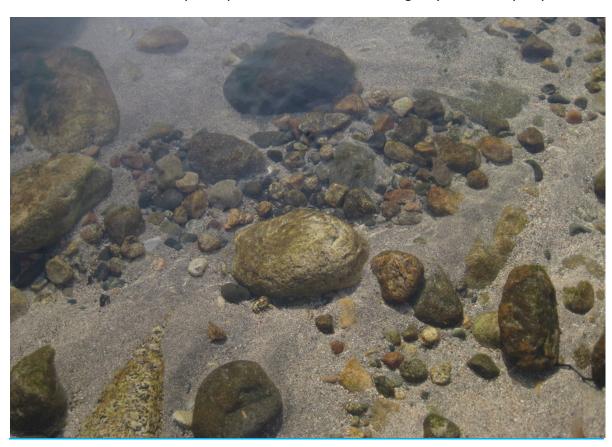
ANNEXE 4 FICHES TECHNIQUES DES STATIONS


FICHE STATION OCTOBRE 2018

Cours d'eau	Date de prélèvement	Longueur totale (prospectée)	Largeur moyenne mouillée
Rizzanese	08/10/2018	44 m (St.Av.Vet)	4 m (St.Av.Vet)
Rizzanese	08/10/2018	138 m (St. Am.PA)	12 m (St. Am.PA)

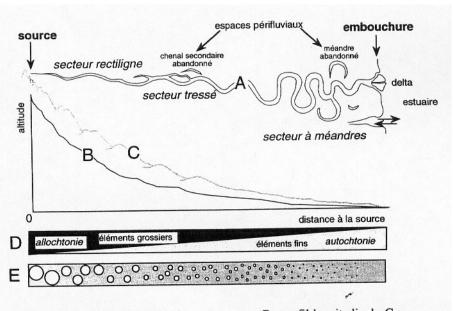
Code	Station	Coordonnées	Coordonnées
Station		GPS aval	GPS amont
St. Am.PA	Amont pont d'Acoravo	41°39'50.11"N	41°39'49.95"N
		9° 0'44.41"E	9° 0'50.46"E
St.Av.Vet	Aval Vetricelli	41°39'6.71"N	41°39'5.98"N
		8°56'13.95"E	8° 56'15.40"E

Situation hydrologique apparente	Eaux descendantes
Tendance hydologique des jours précédents	Stable
Visibilité du fond	Bonne
Remarques	


ANNEXE 5 PLANCHE PHOTOGRAPHIQUES DES ZONES DE PRELEVEMENTS EXEMPLES DE FACIES IDENTIFIES

Surfaces naturelles (amont)

Sédiments fins organiques, vases (aval)


Pierres, Galets amont

ANNEXE 6

LISTE DES 152 TAXONS UTILISÉS POUR LA DÉTERMINATION DE L'IBGN

INSECTES	HÉTÉROPTÈRES	Ptychopteridae	Cambaridae
PLÉCOPTÈRES	Aphelocheiridae	Rhagionidae	Grapsidae
Capniidae	Corixidae	Scatophagidae	Potaonidae
Chloroperlidae	Gerridae	Sciomyzidae	MOLLUSQUES
Leuctridae	Hebridae	Simuliidae Stratiomyidae	
Nemouridae	Hydrometridae	Syrphidae	BIVALVES
Perlidae	Naucoridae	Tabanidae	Corbiculidae
Perlodidae	Nepidae	Thaumaleidae	Dreissenidae
Taeniopterygidae	Notonectidae	Tipulidae	Margaritiferidae
TRICHOPTÈRES	Mesoveliidae		Sphaeriidae
Beraeidae	Pleidae	ODONATES	Unionidae
Brachycentridae	Veliidae	Aeschnidae	GASTÉROPODES
Calamocereratidae	COLÉOPTÈRES	Calopterygidae	Ancylidae
Calamocereratidae Ecnomidae		Coenagrionidae	Acroloxidae
Glossosomatidae	Curculionidae	Cordulegasteridae	Bithynidae
Goeridae	Chrysomelidae	Corduliidae	Ferrissiidae
Helicopsychidae	Dryopidae	Gomphidae	Hydrobiidae
Hydropsychidae Hydropsychidae	Dytiscidae	Lestidae	Limnaeidae
Hydroptilidae	Elmidae	Libellulidae	Neritidae
Lepidostomatidae	Gyrinidae	Platycnemididae	Physidae
Leptoceridae Leptoceridae	Haliplidae	MÉGALOPTÈRES	Planorbidae
Limnephilidae	Helodidae	Sialidae	Valvatidae
Molannidae	Helophoridae	PLANIPENNES	Viviparidae
Odontoceridae	Hydraenidae	Neurorthidae	VEDC
Philopotamidae	Hydrochidae	Osmylidae	VERS
Phryganeidae	Hydrophilidae	Sysyridae	ACHÈTES
Polycentropodidae	Hydroscaphidae		Branchiobdellidae
Psychomyidae	Hygrobiidae	HYMÉNOPTÈRES	Erpobdellidae
Rhyacophilidae	Noteridae	Agriotypidae	Glossiphoniidae
Sericostomatidae	Psephenidae	LÉPIDOPTÈRES	Hirudidae
Uenioidae	Spercheidae	Crambidae	Piscicolidae
	DIPTÈRES	,	TRICLADES
ÉPHÉMÉROPTÈRES		CRUSTACÉS	Dendrocoelidae
Ameletidae	Anthomyidae	BRANCHIOPODES	Dugesiidae
Baetidae	Athericidae		Planariidae
Caenidae 	Blephariceridae	AMPHIPODES	rianamaac
Ephemerellidae	Ceratopogonidae	Corophiidae	OLIGOCHÈTES
Ephemeridae	Chaoboridae	Crangonyctidae	
Heptageniidae	Chironomidae	Gammaridae	NÉMATHELMINTHES
Isonychiidae	Culicidae	Niphargidae Talitridae	HYDRACARIENS
Leptophlebiidae	Cylindrotomidae		HYDROZOAIRES
Neoephemeridae	Dixidae	ISOPODES	
Oligoneuriidae Balumitarridae	Dolichopodidae	Asellidae	SPONGIAIRES
Polymitarcidae Potamanthidae	Empididae	DÉCAPODES	BRYOZOAIRES
	Ephydridae	Astacidae	
Prosopistomatidae Siphlopuridae	Limoniidae	Atyidae Atyidae	NÉMERTIENS
Siphlonuridae	Psychodidae	Atyluae	

ANNEXE 7

 $\label{eq:Figure I.5 - Cours d'eau théorique. A : carte ; B : profil longitudinal ; C : cadre géomorphologique ; D : origine et structure de la matière organique ; E : granulométrie.$

Annexe 8. Rapport d'analyses – Lixiviats

Rapport d'analyse de juillet dans annexe 2 – rapport complet comprenant les analyses du bassin eaux pluviales, bassin lixiviat, drain sous casier, ouvrages souterrains, aval et amont Rizzanese et perméat osmoseur

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

22 Rue François PIETRI - BP 60969 20090 AJACCIO
(3): 04.95.29.14.80 (a): 04.95.29.14.57 (Fax)

SIRET: 200 076 958 00020 (a): lda2a@corsedusud.fr

Dossier n°: SARL_LANFR-180125-431

Echantillon n°:20180125-02419

Produit : Eau résiduaire, pluviale, lixiviat.

Client: 25/01/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

06 Février 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 25/01/2018 Nature échantillon

Date de prélèvement 25/01/2018 Heure de réception 12:49

Heure de prélèvement 11:05 Motif de la visite autosurveillance

Prélevé par Le Laboratoire (TRI) N° de prélèvement/Lieu N°51258

Localisation exacte bassin lixiviat Analyse de type lixi_viggi2

Point de Prelev./Station viggianelo Autre

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
Résistivité	24	ohm.cm		CALCUL
Paramètres physico-chimiques.				
pH (manuel)	8.8	Unité pH		NFENISO10523
Température de la mesure pH	17.0	°C		NFENISO10523
Conductivité (manuelle)	41300	μS/cm		NFEN27888
Chlorures	En cours	mg/l		TITRIMETRIE
Paramètres Azotés et Phosphorés.				
Azote Kjeldhal (en N)	En cours	mg/l		NFEN25663
Nitrites	47.52	mg/l N		MICROMET
Azote global	En cours	mg/l N		CALCUL
Nitrates	146.40	mg/l N		MICROMET
Oxygène et Matières Organiques.				
Demande chimique en oxygène (ST-DCO)	12280	mg/l O2		ISO15705
Demande biochimique en oxygène après 5 jours	79.0	mg/l O2		NFEN1899-1
Matières en Suspension (Filtre Whatman GF/C)	360.0	mg/l		NFEN872
Divers micropolluants Organiques.				
Carbone Organique Total	3416	mg/I C		NFEN1484
9 1				
	1	I .	1 1	

Dossier n°: SARL_LANFR-180125-431

Echantillon n°:20180125-02419

Produit : Eau résiduaire, pluviale, lixiviat.

Client: 25/01/2018

Bulletin n° NetClient Page: 2 sur 1

ANALYSE	RESULTAT	UNITE	limite	METHODES

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire Directeur

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

 N° de rapport d'analyse : AR-18-IX-036411-01
 Version du : 14/03/2018
 Page 1/4

 Dossier N° : 18M011149
 Date de réception : 01/03/2018

Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech	Matrice	Référence échantillon	Observations
001	Eau de rejet / Eau résiduaire	BASSIN LIXIVIAT	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) Indice hydrocarbure Volatil : la matrice de votre échantillon ne nous permet pas d'appliquer les critères normatifs de validation des résultats (XPT 90-124) Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par # et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX : échantillons congelés.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 758 800 090 TVA FR 48 756 800 090 APE 7120B

N° ech 18M011149-001 Version AR-18-IX-036411-01(14/03/2018) Votre réf. BASSIN LIXIVIAT				Page 2/4		
Date de prélèvement	27/02/2018 08:00	Prélèvement ef	fectué par	IRH AIX (CLIEN	IT) - IRH13	
Date de réception		Température de	l'air de	7.3°C		
Début d'analyse	01/03/2018	rencemie				
Préparations			Résultat	Unité		Incertitude
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 15587-1 ou NF EN ISO 15587-2	1-0685 *				
Paramètres physi	cochimiques généraux		Résultat	Unité		Incertitude
	ution réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-088 Conductimétrie - NF EN ISO 10304-1	5 *	8200	mg/l		±1640
IX579 : Conductivité à Potentiométrie [Méthode à la	25°C Prestation réalisée par nos soins sonde] - NF EN 27888					
Conductivité à 25°C		#	39300	μS/cm		±3930
Température de mesure d	de la conductivité	-	19.9	°C		±1.99
	tion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-068: onductimétrie - NF EN ISO 10304-1	5 *	8.8	mg/l		±3.52
IX590 : Mesure du pH Potentiométrie - NF EN ISO	Prestation réalisée par nos soins 10523					
pH		#	8.2	Unités pH		±0.82
Température de mesure d	du pH		19.9	°C		±1.99
IX424 : Résistivité à 25 Calcul - NF EN 27888	°C Prestation réalisée par nos soins		25	ohm.cm		
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC onductimétrie - NF EN ISO 10304-1	1-0685 *	7600	mg SO4/I		±1520
Divers micropollu	ants organiques		Résultat	Unité		Incertitude
IXH8C: Organo Halog ISO/IEC 17025:2005 COFRAC Coulométrie [Adsorption, Cor	énés Adsorbables (AOX) Prestation réalisée par nos soins NF 1-0885 nbustion] - NF EN ISO 9562	EN *	3000	µg/l		±1350
Fer et Manganèse			Résultat	Unité		Incertitude
IX02N : Fer (Fe) Prestation	n réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	20	mg/l		±6
IX01Y: Manganèse (M 1-0685 ICP/AES - NF EN ISO 11885	n) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR	AC *	1.7	mg/l		±0.26
	Micropolluants minéraux					
Oligo-clefficitis - I	micropoliuanto mineraux		Résultat	Unité		Incertitude
IXRDU : Aluminium (A	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA	AC 1-0685 *	7.2	mg/l		±0.72
IX03E : Arsenic (As) Pr	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-	0685 *	0.11	mg/l		±0.028
IX03G : Cadmium (Cd)	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC	1-0685 *	<0.002	mg/l		
IX02Q : Chrome (Cr) Po ICP/AES - NF EN ISO 11885	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-	-0685 *	3.2	mg/l		±1.44

Eurofins Hydrologie Est SAS tél. +33 3 83 50 36 00 Rue Lucien Cuenot Site Saint-Jacques II fax +33 8 20 20 90 32 F-54521 Maxeville cedex

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N* ech 18M011149-001 Version AR-18-IX-036411-01(14/03/2018) Votre réf. BASSIN LIXIVIAT				
Oligo-éléments - Micropolluants minéraux				
Name of the state		Résultat	Unité	Incertit
IX02U : Chrome VI Prestation réalisée par nos soins Spectrophotométrie [Colorimétrie automatisée] - Méthode interne selon NF T 90-043	#	0.91	mg/l	±0.5
IX02P: Cuivre (Cu) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	0.15	mg/l	±0.0
IX027 : Cyanures aisément libérables Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Flux continu - NF EN ISO 14403	*	0.05	mg/l	±0.0
IX03L: Etain (Sn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	1.3	mg/l	±0.3
IXHG0: Mercure (Hg) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 SFA / vapeurs froides (CV-AAS) [Minéralisation à chaud et dosage par AFS] - NF EN ISO 17852	*	<0.5	µg/l	
IXO3I: Nickel (Ni) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	0.65	mg/l	±0.0
IX03W: Plomb (Pb) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	0.06	mg/l	±0.0
IX03V : Zinc (Zn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/AES - NF EN ISO 11885	*	0.64	mg/l	±0.2
Oxygènes et matières organiques		Résultat	Unité	Incertit
IX467 : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 17026:2005 COFRAC 1-0885 Combustion [Détection IR] - NF EN 1484	*	4250	mg/l	±19
IX463 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins Electrochimie - NF EN 1899-1	#	86	mg/l	±4:
IX010: Matières en suspension (MES) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 Filtration [Filtre WHATMAN 934-AH RTU /47] - NF EN 872	*	110	mg/l	±2/
IX18L : Demande chimique en oxygène (ST-DCO) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 Méthode à petite échelle en tube fermé - ISO 15705	*	11800	mg O2/I	±59/
Paramètres azotés et phosphorés		Résultat	Unité	Incertit
IX572 : Azote ammoniacal Prestation réalisée par nos soins Spectrophotométrie (UV/VIS) [automatique] - Méthode Interne selon NF T 90-015-2				
Ammonium	#	1700	mg NH4/I	±59
Azote ammoniacal	#	1310	mg N/I	±45
IXS9E: Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins Calcul -	#	1730	mg N/I	
IX473: Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Titrimétrie [Minéralisation, Distillation] - NF EN 25663	*	1710	mg N/I	±95
IX01Q: Azote Nitrique / Nitrates (NO3) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395				
Azote nitrique	#	1.45	mg N-NO3/I	±0.6
Nitrates	#	6.4	mg NO3/I	±2.8
IX02X: Azote Nitreux / Nitrites (NO2) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395				
Azote nitreux	#	20.6	mg N-NO2/I	±10.

Eurofins Hydrologie Est SAS tél. +33 3 83 50 36 00 Rue Lucien Cuenot Site Saint-Jacques II fax +33 8 20 20 90 32 F-54521 Maxeville cedex

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M011149-001 Version AR-18-IX-036411-01(14/03/2018) Votre réf. BASSIN LIXIVIAT					
Paramètres azotés et phosphorés					
·		Résultat	Unité		Incertitud
Nitrites	#	68	mg NO2/I		±34
IX76J: Phosphore (P) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	53	mg P/I		
Dérivés phénoliques					
		Résultat	Unité		Incertitud
IX480 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 Flux continu - NF EN ISO 14402	*	0.05	mg/l		±0.013
Hydrocarbures					
		Résultat	Unité		Incertitud
IXY6I: Indice hydrocarbures volatils (C5-C11) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 HS - GG/FID - XP T 90-124	*	61	µg/l		±18
IX578 : Indice Hydrocarbures (C10-C40) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 GC/FID Extraction Liquide/ Liquide] - NF EN ISO 9377-2	*	<0.1	mg/l		

Isabelle Meyer Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 4 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.
Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.
Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que

rour octairer, ou non, la contomité à la spécification, in a pas été tenu explicitement compte de l'incertitude associée àu résultat. Tous les elements de traçabilité, ainsi qui les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

22 Rue François PIETRI - BP 60969 20090 AJACCIO
(a): 04.95.29.14.80 (b): 04.95.29.14.57 (Fax)

| SIRET : 200 076 958 00020 @: |da2a@corsedusud.fr

Dossier n°: SARL_LANFR-180328-1520

Echantillon n°:20180328-08333

Produit : Eau résiduaire, pluviale, lixiviat.

Client: 28/03/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Ajaccio, le

Destinataire:

SARL LANFRANCHI T.P.

06 Avril 2018

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 28/03/2018 Nature échantillon

Date de prélèvement 28/03/2018 Heure de réception 12:09

Heure de prélèvement 10:45 Motif de la visite autosurveillance

Prélevé par Le Laboratoire (TRI) N° de prélèvement/Lieu N°50094 Localisation exacte bassin lixiviat Analyse de type lixi_viggi

Point de Prelev./Station viggianelo Autre

Observations

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
Résistivité	27	ohm.cm		CALCUL
Paramètres physico-chimiques.				
pH (manuel)	9.0	Unité pH		NFENISO10523
Température de la mesure pH	17.8	°C .		NFENISO10523
Conductivité (manuelle)	36400	μS/cm		NFEN27888
Chlorures	En cours	mg/l		TITRIMETRIE
Paramètres Azotés et Phosphorés.				
Azote Kjeldhal (en N)	2571.7	mg/l		NFEN25663
Nitrites	5.64	mg/l N		MICROMET
Azote global	2642.8	mg/l N		CALCUL
Nitrates	65.50	mg/l N		MICROMET
Oxygène et Matières Organiques.				
Demande chimique en oxygène (ST-DCO)	11620	mg/l O2		ISO15705
Demande biochimique en oxygène après 5 jours	71.0	mg/I O2		NFEN1899-1
Matières en Suspension (Filtre Whatman GF/C)	360.0	mg/l		NFEN872
Divers micropolluants Organiques.				
Carbone Organique Total	2756	mg/I C		NFEN1484
			ĺ	

Dossier n°: SARL_LANFR-180328-1520

Echantillon n°:20180328-08333

Produit : Eau résiduaire, pluviale, lixiviat.

Client: 28/03/2018

Bulletin n° NetClient Page: 2 sur 1

ANALYSE	RESULTAT	UNITE	limite	METHODES

Page

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire Directeur

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laenned petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-082944-01 Version du : 07/06/2018 Page 1/3 Dossier Nº: 18M024186 Date de réception : 27/04/2018

Référence bon de commande : AFFAIRE CORP180001 - LANFRANCHI

N° Ech	Matrice	Référence échantillon	Observations
003	Eau de rejet / Eau résiduaire	BAŞSIN LIXIVIAT	(1203) (voir note ci-dessous) (2212) (voir note ci-dessous) (2232) (voir note ci-dessous) Arrivée hors délai pour les analyses de la DBO5, MES, NO2, NO3, conductivité, résistivté et pH

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre demière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par ¥ et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.
(2212) DBO5 : échantillon(s) congelé(s) après les délais normatifs.
(2222) Température à réception non conforme

Rue Luden Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tel: +33 3 83 50 36 00 fax +33 6 20 20 90 32

www.eurofins.frienv

0A3 au capital de 1 612 784 € RCS NANCY 755 800 090 TVA FR 46 756 800 090 APE 71208

Date de prélévement	24/04/2018 08:40	Prélévement e	ffectué par	IRH AIX (CLIENT) - IRH13	
Date de réception	27/04/2018 06:38	Lieu prélévem	_	PRORPIANO	
Début d'analyse	27/04/2018	Température d l'enceinte	e l'air de	15.4°C	
Paramètres physico	ochimiques généraux		Résultat	Unité	Incertit
	n réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-06 ductimétrie - NF EN ISO 10304-1	85 *	7400	mg/l	±14
IX579 : Conductivité à 2: Potentiométrie (Méthode à le so	5°C Prestation réalisée par nos soins ndej - NF EN 27888				
Conductivité à 25°C			35400	µ8/cm	135
Température de mesure de	la conductivité		20.9	*C	±2.0
IX590 : Mesure du pH Pre Potentiométrie - NF EN ISO 10					
pH			8.3	Unités pH	±0.0
Température de mesure du	рН		20.9	*C	±2.0
IX424 : Résistivité à 25% Calcul - NF EN 27888	Prestation réalisée par nos soins		28	ohm.cm	
Oxygènes et matièr	res organiques		Résultat	Unité	Incert
IX467 : Carbone Organic Combustion [Dilection IR] - NF	que Total (COT) Prestation réalisée par nos soins EN 1484	•	3290	mg/l	±14
	mique en oxygène (DBO5) Prestation réalisée par nos soit pin électronique) (Electrochimie) - NF EN 1899-1	ns s	33	mgl	±1
IX010 : Matières en susp Filtration (Filtre WHATMAN 934	Dension (MES) Prestation réalisée par nos soins AH RTU/47] - NF EN 872	*	63	mg/l	±1
ISO/IEC 17025:2005 COFRAC 1-0	 UE en oxygène (ST-DCO) Prestation réalisée par nos soins 1685 1686 en tube farmé) - ISO 15705	NFEN *	10400	mg O2/I	±50
Paramètres azotés	et phosphorés		Résultat	Unité	Incerti
IXS9E : Azote global (NO Calcul -	02+NO3+NTK) Prestation réalisée par nos soins	•	2370	mg N/I	
IX473 : Azote Kjeldahl (N 1-0665 78rimétrie (Minéralisation, Distill	ITK) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 lation) - NF EN 25663	COFRAC *	2340	mg N/I	±11
IX01Q: Azote Nitrique / Flux continu - NF EN ISO 1339	Nitrates (NO3) Prestation réalisée par nos soins 5				
Azote nitrique			11.5	mg N-NO3/I	±5.
Nitrates		*	51	mg NO3/I	#2
IX02X: Azote Nitreux / N Flux continu - NF EN ISO 1339	Iltrites (NO2) Prestation réalisée par nos soins 5				
Azote nitreux			21.9	mg N-NO2/I	±10.
Nitrites		:	72	mg NO2/I	13

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

SAS au capital de 1 812 784 € RCS NANCY 755 800 090 TVA FR 46 756 800 090 APE 7120B

1-0685 Site de Maxeville Portée disponible sur

N° ech 18M024186-003 | Version AR-18-IX-082944-01(07/06/2018) | Votes Nf. BASSIN LIXIVIAT

Page 3/3

Carine Grun Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 3 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.
Deules certaines prestations rapportées dans ce document sont couvertes par l'accreditation. Elles sont identifiées par le symbole.

Pour déclarer, ou non, la conformité à la specification, il n'a pas été tenu explictement compte de l'incertitudes associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats assus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agrée pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément

disponible sur demande. Analyses effectuées par un laboratoire agrée par le ministère chargé de l'environnement dans les conditions de l'amété du 27/10/2011.

Eurofins Hydrologie Est SAD Rue Lucien Guenot Site Saint-Jacques II F-54521 Maxeville cedex

0A0 au capital de 1 812 784 € RC3 NANCY 756 800 090 TVA FR 46 756 800 090 APE 71208

1-0685 Dite de Maxeville Portée disponible sur www.cofrac.fr

LABORATOIRE D'ANALYSES VETERINAIRES AGRICOLES et de CONTROLE DES EAUX

SIRET : 200 076 958 00020 : Ida2a@corsedusud.fr

05 Septembre 2018

Dossier n°: SARL_LANFR-180829-5312

Echantillon n°:20180829-26134

Produit : Eau résiduaire, pluviale, lixiviat.

Client: 29/08/2018

Bulletin n°: NetClient Page: 1 sur 1

Rapport d'Analyse

Destinataire :

Ajaccio, le

SARL LANFRANCHI T.P.

lieu dit "I VESPI"

VIGGIANELLO 20110

Date de réception 29/08/2018 Nature échantillon

Date de prélèvement 29/08/2018 Heure de réception 13:08

Heure de prélèvement 11:00 Motif de la visite autosurveillance

Prélevé par Le Laboratoire (TRI) N° de prélèvement/Lieu 55807 Localisation exacte bassin lixiviat Analyse de type lixi_viggi

Point de Prelev./Station viggianelo Autre

Observations -

ANALYSE	RESULTAT	UNITE	limite	METHODES
Paramètres déterminés sur place.				
Résistivité	28	ohm.cm		CALCUL
Paramètres physico-chimiques.				
pH (manuel)	8.5	Unité pH		NFENISO10523
Température de la mesure pH	20.8	°C .		NFENISO10523
Conductivité (manuelle)	35200	μS/cm		NFEN27888
Chlorures	En cours	mg/l		TITRIMETRIE
Paramètres Azotés et Phosphorés.				
Azote Kjeldhal (en N)	5580.4	mg/l		NFEN25663
Nitrites	5.02	mg/l N		MICROMET
Azote global	En cours	mg/l N		CALCUL
Nitrates	153.00	mg/I N		MICROMET
Oxygène et Matières Organiques.				
Demande chimique en oxygène (ST-DCO)	14800	mg/l O2		ISO15705
Demande biochimique en oxygène après 5 jours	130.0	mg/l O2		NFEN1899-1
Matières en Suspension (Filtre Whatman GF/C)	415.0	mg/l		NFEN872
Divers micropolluants Organiques.				
Carbone Organique Total	3044	mg/I C		NFEN1484

Dossier n°: SARL_LANFR-180829-5312

Echantillon n°:20180829-26134

Produit : Eau résiduaire, pluviale, lixiviat.

Client: 29/08/2018

Bulletin n° NetClient Page: 2 sur 1

ANALYSE	RESULTAT	UNITE	limite	METHODES

Page

2

Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale et est soumise à l'autorisation du laboratoire Directeur

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER Parc Napollon - Bât. C 400, Avenue du Passe-Temps 13676 AUBAGNE CEDEX **FRANCE**

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-210917-01 Version du : 11/12/2018 Page 1/3

Date de réception : 29/11/2018 Dossier N°: 18M080878 Référence bon de commande : AFFAIRE CORP18001 - DRC SAS LANFRANCHI

N° Ech	Matrice	Référence échantillon	Observations
001	Eau de rejet / Eau résiduaire	BASSIN LIXIVIAT	(1203) (voir note ci-dessous) (2212) (voir note ci-dessous) Arrivée hors délai pour les analyses de la DBO5, NO2, NO3, conductivité, pH et résistivité Nitrates : La limite de quantification a été augmentée en raison du caractère particulier de la matrice de l'échantillon.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation. (2212) DBO5 : échantillon(s) congelé(s) après les délais normatifs.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Date de prélèvement	27/11/2018 09:45	Prélèvement et	fectué par	IRH AIX (CLIENT) - IRH	13
Date de réception			e l'air de	5.2°C	
Début d'analyse	29/11/2018	l'enceinte			
Paramètres physic	ochimiques généraux				
r didilictics physic	Sommades generalax		Résultat	Unité	Incertit
X02J : Chlorures Prestati	ion réalisée par nos soins NF EN ISO/IEC 17025:200	COFRAC 1-0685 *	6700	mg/l	±13
Chromatographie ionique - Cor	nductimétrie - NF EN ISO 10304-1				
X579 : Conductivité à 2	25°C Prestation réalisée par nos soins				
Potentiométrie [Correction à l'a	ide d'un dispositif de compensation de température] -	NF EN 27888			
Conductivité à 25°C		#	36100	µS/cm	±36
Température de mesure de	e la conductivité		20.1	°C	±2.
X590 : Mesure du pH Pr	restation réalisée par nos soins				
Potentiométrie - NF EN ISO 10	0523				
рН		#	8.3	Unités pH	±0.8
Température de mesure du	J pH		20.1	°C	±2.0
X424 : Résistivité à 25°	C Prestation réalisée par nos soins		28	ohm.cm	
Calcul - NF EN 27888					
Oxygènes et matiè	eres organiques				
			Résultat	Unité	Incerti
	que Total (COT) Prestation réalisée par nos so	ns NF EN ISO/IEC *	4350	mg/l	±19
17025:2005 COFRAC 1-0685 Combustion [Détection IR] - N	F EN 1484				
X463 : Demande bioch	imique en oxygène (DBO5) Prestation réa	isée par nos soins #	40	mg/l	±20
Spectroscopie (Résonance de	spin électronique) [Electrochimie] - NF EN 1899-1				
X010 : Matières en sus	pension (MES) Prestation réalisée par nos soin	s NF EN ISO/IEC *	33000	mg/l	±82
7025:2005 COFRAC 1-0685 Filtration [Filtre WHATMAN 934	4-AH RTU /471 - NF EN 872				
	que en oxygène (ST-DCO) Prestation réalis	ée nar nos soins NE EN *	10700	mg O2/I	±538
SO/IEC 17025:2005 COFRAC 1-				9	
_					
Paramètres azotés	s et pnospnores		Résultat	Unité	Incertit
YSGE · Azote global (N	O2+NO3+NTK) Prestation réalisée par nos soin	, #	1880	mg N/I	
Calcul -	OZ - NOO - NTTY Testation realisee par nos soin		1000	ing ivi	
	NTK) Prestation réalisée par nos soins NF EN ISO/	EC 47025-2005 COEDAC *	1880	mg N/I	±94
-0685	•	EC 17025.2005 COFRAC	1000	mg N/I	254
Titrimétrie [Minéralisation, Disti					
X01Q : Azote Nitrique / Flux continu - NF EN ISO 133	Nitrates (NO3) Prestation réalisée par nos soir	S			
			.0.00	ma N NOS#	
Azote nitrique		#	<0.22	mg N-NO3/I	
Nitrates	Nitritoo (NO2) Decetation of allede	#	<1.0	mg NO3/I	
Flux continu - NF EN ISO 133:	Nitrites (NO2) Prestation réalisée par nos soins 95				
Azote nitreux		#	1.23	mg N-NO2/I	±0.6

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

18M080878-001 | Version AR-18-IX-210917-01(11/12/2018) | Votre réf. BASSIN LIXIVIAT

Isabelle Meyer Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 3.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les étéments de traçabilité, ainsi que

Pour declarer, ou non, la conformite a la specification, il n'a pas ête tenu explicitement compte de l'incertitude associée au resultat. Tous les elements de traçabilité, ainsi qui les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponibles sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Annexe 9. Rapports d'analyses – Perméats

Rapport d'analyse de juillet dans annexe 2 – rapport complet comprenant les analyses du bassin eaux pluviales, bassin lixiviat, drain sous casier, ouvrages souterrains, aval et amont Rizzanese et perméat osmoseur

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER bat laennec petit arbois 13592 AIX EN PROVENCE CEDEX 3

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-18-IX-035720-01 Version du : 13/03/2018 Page 1/4

Dossier N° : 18M011149 Date de réception : 01/03/2018

Référence bon de commande : AFFAIRE CORP180001 - SARL LANFRANCHI ENVIRONNEMENT

N° Ech	Matrice	Référence échantillon	Observations
010	Eau de rejet / Eau résiduaire	PERMEAT OSMOSEUR	(1203) (voir note ci-dessous) (179) (voir note ci-dessous) Arrivée hors délai pour les analyses des paramètres 24h.

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par # et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation.

(179) AOX : échantillons congelés.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 758 800 090 TVA FR 48 756 800 090 APE 7120B

N° ech 18M011149-010	Version AR-18-IX-035720-01(13/03/2018) Votre réf. P	ERMEAT OS	MOSEUR			Page 2/4
Date de prélèvement	27/02/2018 08:00 F	rélèvement ef	fectué par	IRH AIX (CLIE	NT) - IRH13	
Date de réception		empérature de	l'air de	7.3°C		
Début d'analyse	01/03/2018	'enceinte				
Préparations						
r reparations			Résultat	Unité		Incertitude
IX488 : Minéralisation F	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1	-0685 *				
Digestion acide - NF EN ISO	15587-1 ou NF EN ISO 15587-2					
Paramètres physic	cochimiques généraux					
			Résultat	Unité		Incertitude
	25°C Prestation réalisée par nos soins					
Potentiométrie [Méthode à la s	sonde] - NF EN 27888					
Conductivité à 25°C		#	275	μS/cm		±28
Température de mesure d	e la conductivité		20.3	°C		±2.03
	ion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.1	mg/l		
	nductimétrie - NF EN ISO 10304-1					
IX590 : Mesure du pH P	•					
Potentiométrie - NF EN ISO 1	0523					
pH		#	6.4	Unités pH		±0.64
Température de mesure d			20.3	°C		±2.03
	°C Prestation réalisée par nos soins		3640	ohm.cm		
Calcul - NF EN 27888						
Divers micropollua	ants organiques					
			Résultat	Unité		Incertitude
IXH8C : Organo Halogé ISO/IEC 17025:2005 COFRAC 1	enés Adsorbables (AOX) Prestation réalisée par nos soins NF E	EN *	<10	µg/l		
Coulométrie [Adsorption, Com	bustion] - NF EN ISO 9562					
Fer et Manganèse						
			Résultat	Unité		Incertitude
	réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.02	mg/l		
ICP/AES - NF EN ISO 11885						
IX01Y : Manganèse (Mr 1-0685	1) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA	۲ ×	<0.01	mg/l		
ICP/AES - NF EN ISO 11885						
Oligo-éléments - N	/licropolluants minéraux					
ongo olomonio il			Résultat	Unité		Incertitude
IXRDU : Aluminium (Al) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAG	C 1-0685 *	<0.02	mg/l		
ICP/AES - NF EN ISO 11885						
IX03E : Arsenic (As) Pre	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0	685 *	<0.01	mg/l		
ICP/AES - NF EN ISO 11885						
	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC	1-0685 *	<0.002	mg/l		
ICP/AES - NF EN ISO 11885						
	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0	685 *	<0.005	mg/l		
ICP/AES - NF EN ISO 11885						
	tation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-08	85 *	0.12	mg/l		±0.024
ICP/AES - NF EN ISO 11885						
IX027 : Cyanures aisén 17025:2005 COFRAC 1-0685	nent libérables Prestation réalisée par nos soins NF EN ISO/IEC	*	<0.01	mg/l		
Flux continu - NF EN ISO 144	103					

Eurofins Hydrologie Est SAS tél. +33 3 83 50 36 00 Rue Lucien Cuenot Site Saint-Jacques II fax +33 8 20 20 90 32 F-54521 Maxeville cedex

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M011149-010 Version AR-18-IX-035720-01(13/03/2018) Votre réf. PERME	ech 18M011149-010 Version AR-18-IX-035720-01(13/03/2018) Votre réf. PERMEAT OSMOSEUR			Page 3/4	
Oligo-éléments - Micropolluants minéraux					
		Résultat	Unité		Incertitud
IX03L: Etain (Sn) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	<0.005	mg/l		
IXHG0 : Mercure (Hg) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 SFA / vapeurs froides (CV-AAS) [Minéralisation à chaud et dosage par AFS] - NF EN ISO 17852	*	<0.5	µg/l		
IX031 : Nickel (Ni) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	<0.01	mg/l		
IX03W: Plomb (Pb) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2006 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	<0.01	mg/l		
IXO3V : ZInc (Zn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685 ICP/AES - NF EN ISO 11885	*	0.15	mg/l		±0.060
IX2MA : Somme des métaux toxiques :Cd+Hg+As+Pb+Ni+Cu+Cr+Zn Prestation réalisée par nos soins Calcul -		0.27	mg/l		
Oxygènes et matières organiques		Résultat	Unité		Incertitud
IX467 : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 Combustion [Détection IR] - NF EN 1484	*	0.6	mg/l		±0.27
IX463 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins Electrochimie - NF EN 1899-1	#	<3.0	mg/l		
IX00G : Demande Chimique en Oxygène (DCO) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 Volumétrie - NF T 90-101	*	<30.0	mg O2/I		
IX010 : Matières en suspension (MES) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Filtration [Filtre WHATMAN 934-AH RTU /47] - NF EN 872	*	<2	mg/l		
Paramètres azotés et phosphorés					
		Résultat	Unité		Incertitud
IXS9E : Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins Calcul -	#	7.28	mg N/I		
IX473 : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Titrimétrie [Minéralisation, Distillation] - NF EN 25663	*	6.9	mg N/I		±3.45
IX01Q : Azote Nitrique / Nitrates (NO3) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395					
Azote nitrique	#	0.24	mg N-NO3/I		±0.10
Nitrates	#	1.1	mg NO3/I		±0.50
IX02X: Azote Nitreux / Nitrites (NO2) Prestation réalisée par nos soins Flux continu - NF EN ISO 13395					
Azote nitreux	#	0.14	mg N-NO2/I		±0.070
Nitrites	#	0.45	mg NO2/I		±0.225
IX76J: Phosphore (P) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 ICP/AES - NF EN ISO 11885	*	0.03	mg P/I		
Dérivés phénoliques		Résultat	Unité		Incertitud
IX480 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0685 Flux continu - NF EN ISO 14402	*	<0.01	mg/l		

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

18M011149-010 | Version AR-18-IX-035720-01(13/03/2018) | Votre réf. PERMEAT OSMOSEUR

Total Control of the	L/11 001	MODEOIT		9	
Hydrocarbures		Résultat	Unité		Incertitude
IXY6I : Indice hydrocarbures volatils (C5-C11) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 HS - GC/FID - XP 7 90-124	*	<25	µg/l		
IX578 : Indice Hydrocarbures (C10-C40) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 GC/FID [Extraction Liquide / Liquide] - NF EN ISO 9377-2	*	<0.1	mg/l		

Isabelle Meyer Coordinateur de Projets Clients

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 4 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponibles sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS en Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

IRH INGENIEUR CONSEIL Monsieur Pierre BOYER Parc Napollon - Bât. C 400, Avenue du Passe-Temps 13676 AUBAGNE CEDEX FRANCE

RAPPORT D'ANALYSE

N° de rapport d'analyse : AR-19-IX-002819-01 Version du : 07/01/2019 Page 1/4

Dossier N°: 18M080878 Date de réception : 29/11/2018 Référence bon de commande : AFFAIRE CORP18001 - DRC SAS LANFRANCHI

N° Ech Matrice Référence échantillon Observations Eau de rejet / Eau résiduaire PERMEAT OSMOSEUR (1203) (voir note ci-dessous) (179) (voir note ci-dessous) (2212) (voir note ci-dessous) Arrivée hors délai pour les analyses de la conductivité, DBO5, pH, NO2, NO3 et résistivité

(1203) Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation. AOX : échantillons congelés.

(2212) DBO5 : échantillon(s) congelé(s) après les délais normatifs.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

1-0685 Site de Maxeville Portée disponible sur www.cofrac.fr

N° ech 18M080878-003	Version AR-19-IX-002819-01(07/01/2019) Votre réf.	PERMEAT OS	MOSEUR			Page 2/4
Date de prélèvement	27/11/2018 09:30	Prélèvement effectué par IRH AIX (CLIENT) - IRH13		NT) - IRH13		
Date de réception	29/11/2018 06:55	Température de l'enceinte	e l'air de	5.2°C		
Début d'analyse	29/11/2018	renceinte				
Préparations						
·			Résultat	Unité		Incertitude
IX488 : Minéralisation Pre	estation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC	1-0685 *				
Digestion acide - NF EN ISO 15	587-1					
Paramètres physico	ochimiques généraux					
			Résultat	Unité		Incertitude
	5°C Prestation réalisée par nos soins					
	de d'un dispositif de compensation de température] - NF EN 27888					
Conductivité à 25°C		#	415	μS/cm		±42
Température de mesure de			20.7	°C		±2.07
	n réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-088	15 *	<0.1	mg/l		
Chromatographie ionique - Cond	ductimétrie - NF EN ISO 10304-1					
IX590 : Mesure du pH Pre						_
Potentiométrie - NF EN ISO 105	523					
рН		#	6.2	Unités pH		±0.62
Température de mesure du	*		20.7	°C		±2.07
IX424 : Résistivité à 25°C	Prestation réalisée par nos soins		2410	ohm.cm		
Calcul - NF EN 27888						
Divers micropolluan	nts organiques		51			Incertitude
			Résultat	Unité		
ISO/IEC 17025:2005 COFRAC 1-0	lés Adsorbables (AOX) Prestation réalisée par nos soins NF 1685	F EN *	280	µg/l		±126
Coulométrie [Adsorption, Combu	ıstion] - NF EN ISO 9562 (H 14): 2005-02					
Fer et Manganèse						
			Résultat	Unité		Incertitude
	éalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.02	mg/l		
ICP/AES - NF EN ISO 11885						
IX01Y: Manganèse (Mn) 1-0685	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFF	RAC *	<0.01	mg/l		
ICP/AES - NF EN ISO 11885						
Oligo-éléments - Mi	icropolluants minéraux					
			Résultat	Unité		Incertitude
IXRDU : Aluminium (Al)	Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFR.	AC 1-0685 *	<0.02	mg/l		
ICP/AES - NF EN ISO 11885						
IX03E : Arsenic (As) Prest	tation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1	-0685 *	<0.01	mg/l		
ICP/AES - NF EN ISO 11885						
IX03G : Cadmium (Cd) Pr	restation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRA	C 1-0685 *	<0.002	mg/l		
ICP/AES - NF EN ISO 11885						
IX02Q : Chrome (Cr) Prest	tation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1	-0685 *	<0.005	mg/l		
ICP/AES - NF EN ISO 11885						
IX02P : Cuivre (Cu) Prestat	tion réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0	0885 *	<0.005	mg/l		
ICP/AES - NF EN ISO 11885				_		

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

N° ech 18M080878-003 Version AR-19-IX-002819-01(07/01/2019) Votre réf. PERMEAT OSMOSEUR			Page 3	/4		
Oligo-éléments - Micropolluants minéraux						
		Résultat	Unité			Incertitude
IX027 : Cyanures aisément libérables Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Flux continu - NF EN ISO 14403	*	<0.01	mg/l			
IX03L : Etain (Sn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885	*	<0.005	mg/l			
ICP/AES - NF EN ISO 11885						
IXHG0 : Mercure (Hg) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885	*	<0.5	µg/l			
SFA / vapeurs froides (CV-AAS) [Minéralisation à chaud et dosage par AFS] - NF EN ISO 17852						
IX03I : Nickel (Ni) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885	*	<0.01	mg/l			
ICP/AES - NF EN ISO 11885						
IX03W: Plomb (Pb) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0685	*	<0.01	mg/l			
ICP/AES - NF EN ISO 11885						
IX03V : Zinc (Zn) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885	*	<0.01	mg/l			
ICP/AES - NF EN ISO 11885						
IX2MA : Somme des métaux toxiques :Cd+Hg+As+Pb+Ni+Cu+Cr+Zn Prestation		<0.01	mg/l			
réalisée par nos soins Calcul -						
Oxygènes et matières organiques		Résultat	Unité			Incertitude
IX467 : Carbone Organique Total (COT) Prestation réalisée par nos soins NF EN ISO/IEC		0.6	mg/l			±0.27
17025:2005 COFRAC 1-0865 Combustion [Détection IR] - NF EN 1494		0.0	g.			20.27
IX463 : Demande biochimique en oxygène (DBO5) Prestation réalisée par nos soins	#	<3.0	mg/l			
Spectroscopie (Résonance de spin électronique) [Electrochimie] - NF EN 1899-1						
IX00G : Demande Chimique en Oxygène (DCO) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 Voluméric - NF 79-0101	*	<30	mg O2/I			
IX010 : Matières en suspension (MES) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 Filtration [Filtre WHATMAN 934-AH RTU /47] - NF EN 872	*	<2	mg/l			
Paramètres azotés et phosphorés		Résultat	Unité			Incertitude
IXS9E : Azote global (NO2+NO3+NTK) Prestation réalisée par nos soins	#	5.90	mg N/I			
Calcul -			,			
IX473 : Azote Kjeldahl (NTK) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC	*	5.9	mg N/I			±2.95
1-0885 Titrimétrie [Minéralisation, Distillation] - NF EN 25663						
IX01Q: Azote Nitrique / Nitrates (NO3) Prestation réalisée par nos soins						
Flux continu - NFEN ISO 13395						
Azote nitrique	#	<0.22	mg N-NO3/I			
Nitrates	#	<1.0	mg NO3/I			
IX02X: Azote Nitreux / Nitrites (NO2) Prestation réalisée par nos soins Flux continu - NFEN ISO 13395						
Azote nitreux	#	<0.02	mg N-NO2/I			
Nitrites	#	<0.07	mg NO2/I			
IX76J: Phosphore (P) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885	*	<0.01	mg P/I			
ICP/AES - NF EN ISO 11885						

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville cedex

tél. +33 3 83 50 36 00 fax +33 8 20 20 90 32

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

ech 18M080878-003 Version AR-19-IX-002819-01(07/01/2019) Votre réf. PERMEAT OSMOSEUR				Page 4/4	
Dérivés phénoliques		Résultat	Unité	Incertitud	
IX480 : Indice phénol Prestation réalisée par nos soins NF EN ISO/IEC 17025/2005 COFRAC 1-0885 Flux continu - NF EN ISO 14402	*	<0.01	mg/l		
Hydrocarbures		Résultat	Unité	Incertitud	
IXY61 : Indice hydrocarbures volatils (C5-C11) Prestation réalisée par nos soins NF EN ISO/IEC 17025-2005 COFRAC 1-0885 HS - GC/FID - XP T 90-124	*	28	µg/l	±8	
IX578 : Indice Hydrocarbures (C10-C40) Prestation réalisée par nos soins NF EN ISO/IEC 17025:2005 COFRAC 1-0885 GC/FID [Extraction Liquide - NF EN ISO 9377-2	*	<0.1	mg/l		

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. Il comporte 4.00 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat. Tous les éléments de traçabilité, ainsi que les incertitudes de mesure, sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé pour la réalisation des prélèvements, des analyses terrain et des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Analyses effectuées par un laboratoire agréé par le ministère chargé de l'environnement dans les conditions de l'arrêté du 27/10/2011.

Eurofins Hydrologie Est SAS Rue Lucien Cuenot Site Saint-Jacques II F-54521 Maxeville oedex

tél +33 3 83 50 36 00

www.eurofins.fr/env

SAS au capital de 1 812 784 € RCS NANCY 756 800 090 TVA FR 46 756 800 090 APE 7120B

Annexe 10. Rapports réglementaires d'analyse des fumées de torchère

RAPPORT

d'analyse des rejets atmosphériques du transvap'o ISDND de Viggianello (20)

date de l'intervention :	17 janvier 2018
--------------------------	-----------------

pour: Lanfranchi Environnement,

20110 Viggianello

Rapport n^o : R-18005-02

Mesure des taux de O2, CO2, CO, NOx, SO2, HCI, HF, CH4

La prestation a été réalisée conformément à la norme ISO 17025 applicable aux laboratoires d'essais, et plus particulièrement selon les normes du programme 97 du COFRAC.

Fait à Beaugas le 23/03/2018

Caterina Wachter

Socrates V 1.17.36

Situation de mesurage

Site	ISDND de Viggianello
Client	Lanfranchi Environnement
Date de l'intervention sur site	17 janvier 2018
Début-Fin de l'intervention	9:30 - 12:30
Objet	Analyse annuelle réglementaire des rejets at- mosphériques
Descriptif installation	Transvap'o marque BIOME
Régime lors du prélèvement	normal
Lieu de prélèvement	Sortie de la cheminée
Dérogations aux normes (synthèse)	Un prélèvement isocinétique n'est pas possible du fait du flux turbulent et de l'absence d'une trappe normalisée. Le meilleur rapprochement possible a été recherché.
Prélèvements et mesurages sur site	Caterina Wachter
Laboratoire sous-traitant	SGS Institut Fresenius, Longuich, D-PL-19613-01-00
Observations	Nous avons utilisé la canne de prélèvement pré- installée, à cause du fort vent.

Conditions climatiques

$^{\circ}$	16.0
mbar	1003.5
% HR	93.2
	dégagé
	très fort
	aucune
	mbar

Affichages station

, mineriages etamen		
Heures de marche	h	1503
Température consignée	℃	950
Température réelle	.C	950
Régime consigné	%	32
Dépression réseau	mbar	1.4
Débit biogaz station	m³/h	153
Volume de lixiviat traité total	m ³	284.1

Synthèse des résultats sur gaz sec à 101.3kPa, 273K et 11% d'oxygène

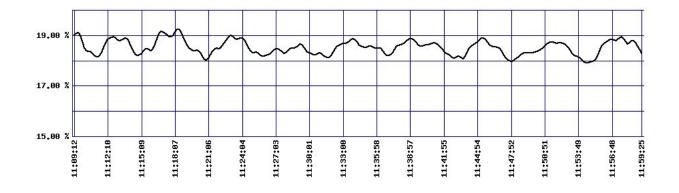
Composant	Unité	Résultat	VLE	Conformité
CO ₂ (dioxyde de carbone)	%	3.449		
CO (monoxyde de carbone)	mg/Nm ³	90.84	150	oui
NO x (oxydes d'azote)	mgNO ₂ /Nm ³	51.8		
SO ₂ (dioxyde de soufre)	mg/Nm ³	112	300	oui
HCl (acide chlorhydrique)	mg/Nm ³	2.9		
HF (acide fluorhydrique)	mg/Nm ³	2.0		
CH ₄ (Méthane)	mg/Nm ³	0		

Conformité des émissions	Oui

^{*} VLE - Valeur limite d'émission

^{*} SD - seuil de détection

 $^{^{\}star}$ ND - non déterminé. Calcul impossible du fait de l'absence de congénères détectés.

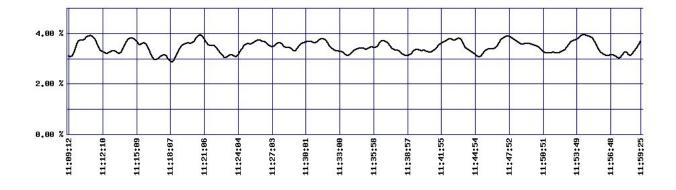

Oxygène

O 2, moyenne	%	18.514
O 2, moyenne	g/Nm ³	264.31
O ₂ , maximum	%	19.22
O ₂ , minimum	%	17.90
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	% vol	0.602

Méthodologie de mesurage		Paramagnétisme
Norme appliquée		NF EN 14789:2006
Début-Fin d'enregistrement		11:09 - 11:59
Durée enregistrement nette	min	50.2
Appareil		PG 250 A/P
Fabricant		Horiba
Nº de série		D00080R5
Échelle	Vol %	0 - 25
Résolution	% _{vol}	0.01
Gaz étalon		5.03 % ±2 % _{relatif} O ₂ , fond N ₂
Certificat du gaz étalon		Messer, n° de la bouteille 6000814265

Concentration de l'oxygène dans les rejets atmosphériques

O ₂ sur gaz sec	$18.514 \%_{\text{vol}} \pm 0.602 \%_{\text{vol}}$
----------------------------	--

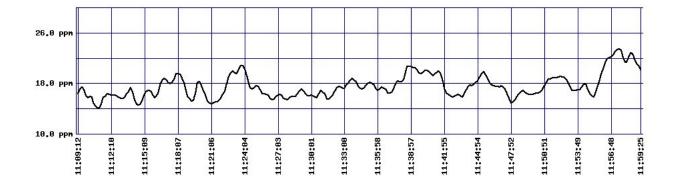

Diodyde de carbone

CO ₂ , moyenne	%	3.449
CO ₂ , moyenne	g/Nm ³	67.72
CO ₂ , maximum	%	3.94
CO ₂ , minimum	%	2.87
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	% vol	0.628

Méthodologie de mesurage		Absorption infrarouge non dispersive (NDIR)
Norme appliquée		-
Début-Fin d'enregistrement		11:09 - 11:59
Durée enregistrement nette	min	50.2
Appareil		PG 250 A/P
Fabricant		Horiba
Nº de série		D00080R5
Échelle	Vol %	0 - 20
Résolution	% _{vol}	0.01
Gaz étalon		5.97 % ±2 % _{relatif} CO ₂ , fond N ₂
Certificat du gaz étalon		Messer, n° de la bouteille 6000814265

Concentration du diodyde de carbone dans les rejets atmosphériques

CO ₂ sur gaz sec	$3.449 \%_{\text{vol}} \pm 0.628 \%_{\text{vol}}$
-----------------------------	---

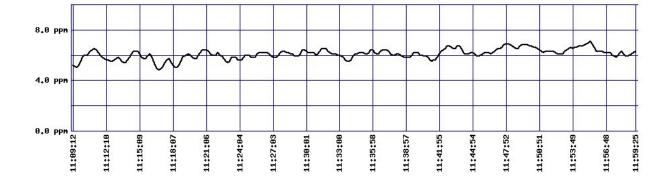

Monoxyde de carbone

CO, moyenne	ppm	17.52
CO sur gaz sec à 101.3kPa et 273K	mg/Nm ³	21.89
CO sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	90.84
CO, maximum	ppm	23.4
CO, minimum	ppm	14.0
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	0.88

Méthodologie de mesurage		Absorption infrarouge non dispersive (NDIR)
Norme appliquée		NF EN 15058:2006
Début-Fin d'enregistrement		11:09 - 11:59
Durée enregistrement nette	min	50.2
Appareil		PG 250 A/P
Fabricant		Horiba
Nº de série		D00080R5
Échelle	ppm	0 - 200
Résolution	ppm	1
Gaz étalon		993 ppm ±2 % _{relatif} CO, fond N ₂
Certificat du gaz étalon		Messer, n° de la bouteille 6000814265

Concentration du monoxyde de carbone dans les rejets atmosphériques

CO sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	90.84 mg/Nm 3 ± 0.88 mg/Nm 3
Valeur limite d'émission du CO	150 mg/Nm ³
Conformité des émissions de CO	Les émissions sont conformes.


Oxydes d'azote

NO x, moyenne	ppm	6.08
NO x équivalent NO 2 sur gaz sec à 101.3kPa et 273K	mg/Nm ³	12.5
NO _x équivalent NO ₂ sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	51.8
NO _x , maximum	ppm	7.1
NO _x , minimum	ppm	4.8
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	0.50

Méthodologie de mesurage		Chimiluminescence
Norme appliquée		NF EN 14792:2006
Début-Fin d'enregistrement		11:09 - 11:59
Durée enregistrement nette	min	50.2
Appareil		PG 250 A/P
Fabricant		Horiba
Nº de série		D00080R5
Échelle	ppm	0 - 500
Résolution	ppm	1
Gaz étalon		390 ppm ±2 % _{relatif} NO, fond N ₂
Certificat du gaz étalon		Messer France, n° de la bouteille 6000708866
2 ^{ème} Gaz étalon		104 ppm ±2 % _{relatif} NO ₂ , fond N ₂
Certificat du 2 ème gaz étalon		Messer France, n° de la bouteille 6000708866

Concentration des oxydes d'azote équivalent NO 2 dans les rejets atmosphériques

NO x équivalent NO 2 sur gaz sec à 101.3kPa,	51.8 mg/Nm ³ ± 0.50 mg/Nm ³
273K et 11% d'oxygène	51.6 mg/Nm ± 0.50 mg/Nm

Dioxyde de soufre

Identifiants d'échantillon		18AA
Volume prélevé	I _{sec}	112.4
Volume prélevé normalisé	Nm ³ sec	0.1111
SO 2 dans l'échantillon	mg	2.99
Seuil de détection dans l'échantillon	mg	0.167
Blanc de mesure	mg	< 0.167

SO ₂ sur gaz sec à 101.3kPa et 273K	mg/Nm ³	26.9
SO ₂ sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	112
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	1.1

La valeur indiquée est au minimum égale à la limite de détection.

Méthodologie de prélèvement		Flacons-laveurs à solution de H ₂ O ₂
Norme appliquée		EN 14791:2005 - ISO 11632:1998
Début-Fin du prélèvement		10:18 - 11:00
Durée nette de prélèvement	min	42
Débit moyen de prélèvement	l/min	2.7
Détermination du débit		Compteur de débit massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-1C
Échelle débitmètre	l/min	0 - 5
Résolution compteur	I	0.1
Date du dernier étalonnage usine		02/10/2014
Résultat de l'étalonnage		Appareil conforme
Méthodologie de dosage		Chromatographie ionique
Norme appliqué		EN 14791:2005 - ISO 11632:1998
Sous-traitant		SGS Institut Fresenius, Longuich, Allemagne

Concentration du dioxyde de soufre dans les rejets atmosphériques

SO ₂ sur gaz sec à conditions normales et à 11% d'oxygène	112 mg/Nm ³ ± 1.1 mg/Nm ³
Valeur limite d'émission de SO 2	300 mg/Nm ³
Conformité des émissions de SO 2	Les émissions sont conformes.

Socrates V 1.17.36

Acide chlorhydrique

Identifiants d'échantillon		18AB
Volume prélevé	I _{sec}	110.4
Volume prélevé normalisé	Nm ³ sec	0.1091
HCl dans l'échantillon	mg	0.000
Seuil de détection dans l'échantillon	mg	0.077
Blanc de mesure	mg	< 0.077

HCI sur gaz sec à 101.3kPa et 273K	mg/Nm ³	0.71
HCI sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	2.9
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	0.03

La valeur indiquée est au minimum égale à la limite de détection.

Méthodologie de prélèvement		Flacons-laveurs à l'eau déminéralisée
Norme appliquée		NF EN 1911-1:1998
Début-Fin du prélèvement		10:18 - 11:00
Durée nette de prélèvement	min	42
Débit moyen de prélèvement	l/min	2.6
Détermination du débit		Compteur de débit massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-2C
Échelle débitmètre	l/min	0 - 5
Résolution compteur	1	0.1
Date du dernier étalonnage usine		20/01/2015
Résultat de l'étalonnage		appareil conforme
Méthodologie de dosage		Chromatographie ionique
Norme appliqué		NF EN 1911-2:1998
Sous-traitant		SGS Institut Fresenius, Longuich, Allemagne

Concentration de l'acide chlorhydrique dans les rejets atmosphériques

HCl sur gaz sec à conditions normales et à 11% d'oxygène	$2.9 \text{ mg/Nm}^3 \pm 0.03 \text{ mg/Nm}^3$
--	--

Socrates V 1.17.36

Acide fluorhydrique

Identifiants d'échantillon		18AB
Volume prélevé	I _{sec}	110.4
Volume prélevé normalisé	Nm ³ sec	0.1091
HF dans l'échantillon	mg	0.000
Seuil de détection dans l'échantillon	mg	0.053
Blanc de mesure	mg	< 0.053

HF sur gaz sec à 101.3kPa et 273K	mg/Nm ³	0.49
HF sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	2.0
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	0.02

La valeur indiquée est au minimum égale à la limite de détection.

Méthodologie de prélèvement		Flacons-laveurs à solution de NaOH
Norme appliquée		XP X 43-304:1998
Début-Fin du prélèvement		10:18 - 11:00
Durée nette de prélèvement	min	42
Débit moyen de prélèvement	l/min	2.6
Détermination du débit		Compteur de débit massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-2C
Échelle débitmètre	l/min	0 - 5
Résolution compteur	I	0.1
Date du dernier étalonnage usine		20/01/2015
Résultat de l'étalonnage		appareil conforme
Méthodologie de dosage		Electrode sélective
Norme appliqué		-
Sous-traitant		SGS Institut Fresenius, Longuich, Allemagne

Concentration de l'acide fluorhydrique dans les rejets atmosphériques

HF sur gaz sec à conditions normales et à	2.0 mg/Nm ³ ± 0.02 mg/Nm ³
11% d'oxygène	2.0 mg/Nm ± 0.02 mg/Nm

Méthane

Identifiants d'échantillon		18AC
Seuil de détection dans l'échantillon	%	0.1
Blanc de mesure	%	< 0.1

CH ₄ sur gaz sec à 101.3kPa et 273K	%	0.0
CH ₄ sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	%	0
Incertitude composée élargie (k=2, niveau de confiance=95.45%)		2%

La valeur indiquée est au minimum égale à la limite de détection.

Méthodologie de prélèvement	Échantillonnage dans sachet Tedlar
Norme appliquée	-
Méthodologie de dosage	Chromatographie gazeuse et WLD
Norme appliqué	NF X20-501, NF X20-363
Sous-traitant	SGS Institut Fresenius, Longuich, Allemagne

Concentration de méthane dans les rejets atmosphériques

CH ₄ sur gaz sec à conditions normales et	0.0/ ± 00/
à 11% d'oxygène	0 % ± 2%

RAPPORT

d'analyse des rejets atmosphériques du transvapo ISDND de Viggianello (20)

ISDND de	e Viggianello (20)
date de l'intervention :	18 décembre 2018
pour :	Lanfranchi Environnement, 20110 Viggianello
Rapport nº :	R-18024-01
	₂ , poussières, As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, Te Tl, V, Zn, Hg
•	la norme ISO 17025 applicable aux laboratoires d'essais es normes du programme 97 du COFRAC.

Fait à Beaugas le 13/02/2019

Caterina Wachter

Situation de mesurage

Site	ISDND de Viggianello	
Client	Lanfranchi Environnement	
Date de l'intervention sur site	18 décembre 2018	
Début-Fin de l'intervention	9:00 - 17:00	
Objet	Analyse annuelle réglementaire des rejets at- mosphériques	
Descriptif installation	Transvap'o marque BIOME	
Régime lors du prélèvement	normal	
Lieu de prélèvement	Par la canne de prélèvement préinstalée	
Dérogations aux normes (synthèse)	Un prélèvement isocinétique n'est pas possible du fait du flux turbulent et de l'absence d'une trappe normalisée. Le meilleur rapprochement possible a été recherché.	
Prélèvements et mesurages sur site	Emmanuel Delrieu	
Laboratoire sous-traitant	Eurofins Environnement, Saverne, Attestation COFRAC 1-1488	
Observations	Aucune.	

Conditions climatiques

Température extérieure	∞	17.9
Pression atmosphérique p atm	mbar	1017.3
Humidité	% HR	54.4
Ciel		bleu
Vent		trés léger
Précipitations		aucune

Affichages station

Heures de marche	h	2889
Température consignée	${\mathbb C}$	950
Température réelle	.€	926
Dépression réseau	mbar	-13.7
Débit biogaz station	m³/h	252

Synthèse des résultats sur gaz sec à 101.3kPa, 273K et 11% d'oxygène

Composant	Unité	Résultat	VLE	Conformité
CO ₂ (dioxyde de carbone)	%	7.561		
CO (monoxyde de carbone)	mg/Nm ³	52.98	250	oui
NO x (oxydes d'azote)	mgNO ₂ /Nm ³	20.4	100	oui
COVNM (Composants organiques volatils non-méthaniques)	mgC/Nm ³	1.79	50	oui
SO 2 (dioxyde de soufre)	mg/Nm ³	32.47	110	oui
Poussières	mg/Nm ³	2.6	5	oui
Cd gazeux et particulaires, sans SD	μg/Nm ³	0.13	50	oui
Tl gazeux et particulaires, sans SD	μg/Nm ³	0	50	oui
Cd + Hg + Tl gazeux et particulaires, sans SD	μg/Nm ³	0	100	oui
As + Se + Te gazeux et particulaires, sans SD	μg/Nm ³	0	1000	oui
Pb gazeux et particulaires, sans SD	μg/Nm ³	4.76	1000	oui
Sb gazeux et particulaires, sans SD	μg/Nm ³	4.86	20000	oui
Cr gazeux et particulaires, sans SD	μg/Nm ³	68.8	20000	oui
Co gazeux et particulaires, sans SD	μg/Nm ³	2.24	20000	oui
Cu gazeux et particulaires, sans SD	μg/Nm ³	90.9	20000	oui
Sn gazeux et particulaires, sans SD	μg/Nm ³	3.16	20000	oui
Mn gazeux et particulaires, sans SD	μg/Nm ³	46.7	20000	oui
Ni gazeux et particulaires, sans SD	μg/Nm ³	418	20000	oui
V gazeux et particulaires, sans SD	μg/Nm ³	0.38	20000	oui
Zn gazeux et particulaires, sans SD	μg/Nm ³	540	20000	oui
Hg (mercure), sans SD	μg/Nm ³	0	50	oui

Conformité des émissions	Oui
	I I

^{*} VLE - Valeur limite d'émission

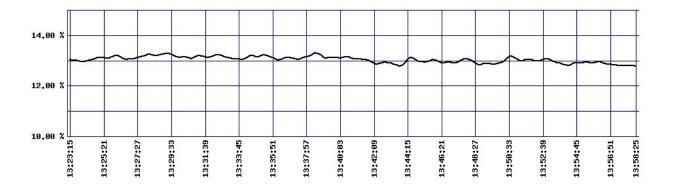
^{*} SD - seuil de détection

^{*} ND - non déterminé. Calcul impossible du fait de l'absence de congénères détectés.

Température

Température moyenne à l'endroit du prélèvement	°C	72.76
Température maximale	℃	102.5
Température minimale	.€	63.6

Méthodologie de mesurage		Thermocouple type KI-CR-1-6-K-STVI-1000/3
Début-Fin d'enregistrement		15:04 - 15:22
Durée enregistrement nette	min	15
Appareil		MP200 Manomètre
Fabricant		KIMO Constructeur
Nº de série		10117889
Gamme		-200°C − +1200°C
Résolution	К	0.1
Date du dernier étalonnage usine		02/07/2018
Résultat de l'étalonnage usine		appareil conforme

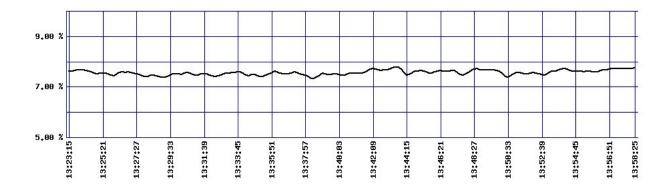


O 2, moyenne	%	13.038
O 2, moyenne	g/Nm ³	186.13
O ₂ , maximum	%	13.30
O ₂ , minimum	%	12.79
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	% vol	0.593

Méthodologie de mesurage		Paramagnétisme
Norme appliquée		NF EN 14789:2006
Début-Fin d'enregistrement		13:23 - 13:58
Durée enregistrement nette	min	35.2
Appareil		PG 250 A/P
Fabricant		Horiba
Nº de série		D00080R5
Échelle	Vol %	0 - 25
Résolution	% _{vol}	0.01
Gaz étalon		5.03 % ±2 % _{relatif} O ₂ , fond N ₂
Certificat du gaz étalon		Messer, n° de la bouteille 6000814265

Concentration de l'oxygène dans les rejets atmosphériques

O ₂ sur gaz sec	$13.038 \%_{\text{vol}} \pm 0.593 \%_{\text{vol}}$
----------------------------	--

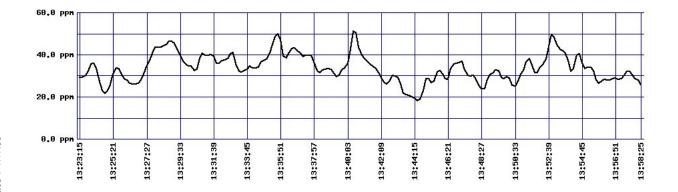


CO ₂ , moyenne	%	7.561
CO ₂ , moyenne	g/Nm ³	148.5
CO ₂ , maximum	%	7.79
CO ₂ , minimum	%	7.33
Incertitude composée élargie (k=2, niveau de	% vol	0.685
confiance=95.45%)		

Méthodologie de mesurage		Absorption infrarouge non dispersive (NDIR)
Norme appliquée		-
Début-Fin d'enregistrement		13:23 - 13:58
Durée enregistrement nette	min	35.2
Appareil		PG 250 A/P
Fabricant		Horiba
Nº de série		D00080R5
Échelle	Vol %	0 - 20
Résolution	% _{vol}	0.01
Gaz étalon		5.97 % ±2 % _{relatif} CO ₂ , fond N ₂
Certificat du gaz étalon		Messer, n° de la bouteille 6000814265

Concentration du diodyde de carbone dans les rejets atmosphériques

CO ₂ sur gaz sec	$7.561 \%_{\text{vol}} \pm 0.685 \%_{\text{vol}}$
-----------------------------	---

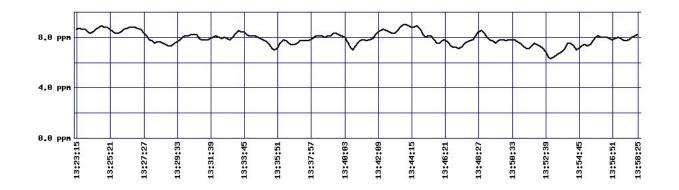

Monoxyde de carbone

CO, moyenne	ppm	33.67
CO sur gaz sec à 101.3kPa et 273K	mg/Nm ³	42.08
CO sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	52.98
CO, maximum	ppm	51.0
CO, minimum	ppm	18.2
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	1.68

Méthodologie de mesurage		Absorption infrarouge non dispersive (NDIR)
Norme appliquée		NF EN 15058:2006
Début-Fin d'enregistrement		13:23 - 13:58
Durée enregistrement nette	min	35.2
Appareil		PG 250 A/P
Fabricant		Horiba
Nº de série		D00080R5
Échelle	ppm	0 - 200
Résolution	ppm	1
Gaz étalon		993 ppm ±2 % _{relatif} CO, fond N ₂
Certificat du gaz étalon		Messer, n° de la bouteille 6000814265

Concentration du monoxyde de carbone dans les rejets atmosphériques

CO sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	52.98 mg/Nm 3 ± 1.68 mg/Nm 3
Valeur limite d'émission du CO	250 mg/Nm ³
Conformité des émissions de CO	Les émissions sont conformes.

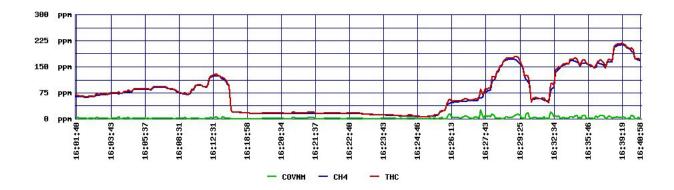

Oxydes d'azote

NO x, moyenne	ppm	7.89
NO x équivalent NO 2 sur gaz sec à 101.3kPa et 273K	mg/Nm ³	16.2
NO _x équivalent NO ₂ sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	20.4
NO x, maximum	ppm	9.0
NO x, minimum	ppm	6.3
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	0.65

Méthodologie de mesurage		Chimiluminescence
Norme appliquée		NF EN 14792:2006
Début-Fin d'enregistrement		13:23 - 13:58
Durée enregistrement nette	min	35.2
Appareil		PG 250 A/P
Fabricant		Horiba
Nº de série		D00080R5
Échelle	ppm	0 - 100
Résolution	ppm	1
Gaz étalon		390 ppm ±2 % _{relatif} NO, fond N ₂
Certificat du gaz étalon		Messer France, n° de la bouteille 6000708866
2 ème Gaz étalon		104 ppm ±2 % _{relatif} NO ₂ , fond N ₂
Certificat du 2 ème gaz étalon		Messer France, n° de la bouteille 6000708866

Concentration des oxydes d'azote équivalent NO 2 dans les rejets atmosphériques

NO _x équivalent NO ₂ sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	20.4 mg/Nm 3 ± 0.65 mg/Nm 3	
Valeur limite d'émission du NO x	100 mg/Nm ³	
Conformité des émissions de NO x	Les émissions sont conformes.	


COV totaux, moyenne	ppm C ₁	73.5
COV totaux équivalents C sur gaz humide à 101.3kPa et 273K, moyenne	mgC/Nm ³	39.4
COV totaux équivalents C sur gaz humide à 101.3kPa, 273K et 11% d'oxygène, moyenne	mgC/Nm ³	49.6
COV totaux, maximum	ppm C ₁	217.78
COV totaux, minimum	ppm C ₁	6.57

COV totaux, moyenne	ppm C ₃	24.5
COV totaux, maximum	ppm C ₃	72.59
COV totaux, minimum	ppm C ₃	2.19

Méthane

CH ₄ , moyenne	ppm C ₁	70.84
CH ₄ sur gaz humide à 101.3kPa et 273K, moyenne	mgC/Nm ³	37.96
CH ₄ sur gaz humide à 101.3kPa, 273K et 11% d'oxygène, moyenne	mgC/Nm ³	47.80
Méthane, maximum	ppm C ₁	214.27
Méthane, minimum	ppm C ₁	6.37

CH ₄ , moyenne	ppm C ₃	23.61
Méthane, maximum	ppm C ₃	71.42
Méthane, minimum	ppm C ₃	2.12

Socrates V 1.17.39

Composants organiques volatils non-méthaniques

COVNM, moyenne	ppm C ₁	2.65
COVNM équivalents C sur gaz humide à 101.3kPa et 273K, moyenne	mgC/Nm ³	1.42
COVNM équivalents C sur gaz humide à 101.3kPa, 273K et 11% d'oxygène, moyenne	mgC/Nm ³	1.79
COVNM, maximum	ppm C ₁	24.76
COVNM, minimum	ppm C ₁	0.01

COVNM, moyenne	ppm C ₃	0.88
COVNM, maximum	ppm C ₃	8.25
COVNM, minimum	ppm C ₃	0.00

Incertitude composée élargie (k=2, niveau de	mgC/Nm ³	0.11
confiance=95.45%)	mgC/Nm	0.11

Méthodologie de mesurage		Détecteur à ionisation de flamme (FID)
Norme appliquée		NF EN 12619:1999
Début-Fin d'enregistrement		16:01 - 16:40
Durée enregistrement nette	min	39.3
Appareil		JUM 109L
Fabricant		JUM
Nº de série		07041961-99
Échelle	ppm C ₁	0 - 328
Résolution	V	0.01
Gaz carburant		40 % ±2 % H ₂ , fond He
Certificat du gaz carburant		Messer France, n° de la bouteille 53551103
Gaz étalon CH 4		1970 ppm ±2 % _{relatif} CH ₄ , fond N ₂
Certificat du gaz étalon CH 4		Messer, n° de la bouteille 53179989
Gaz étalon C ₃ H ₈		665 ppm ±2 % _{relatif} C ₃ H ₈ , fond N ₂
Certificat du gaz étalon C ₃ H ₈		Messer, n° de la bouteille 31307033

Concentration des composants organiques volatils non-méthaniques dans les rejets atmosphériques

COVNM équivalents C sur gaz humide à 101.3kPa, 273K et 11% d'oxygène	1.79 mgC/Nm ³ ± 0.11 mgC/Nm ³
Valeur limite d'émission des COVNM	50 mgC/Nm ³
Conformité des émissions de COVNM	Les émissions sont conformes.

Dioxyde de soufre

Identifiants d'échantillon		18ME
Volume prélevé	I _{sec}	230.3
Volume prélevé normalisé	Nm ³ sec	0.2253
SO 2 dans l'échantillon	mg	5.810
Seuil de détection dans l'échantillon	mg	0.028
Blanc de mesure	mg	< 0.028

SO ₂ sur gaz sec à 101.3kPa et 273K	mg/Nm ³	25.79
SO ₂ sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	32.47
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	1.04

La valeur indiquée est au minimum égale à la limite de détection.

Méthodologie de prélèvement		Flacons-laveurs à solution de H ₂ O ₂
Norme appliquée		EN 14791:2005 - ISO 11632:1998
Début-Fin du prélèvement		14:00 - 15:38
Durée nette de prélèvement	min	98
Débit moyen de prélèvement	l/min	2.4
Détermination du débit		Compteur de débit massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-1C
Échelle débitmètre	l/min	0 - 5
Résolution compteur	I	0.1
Date du dernier étalonnage usine		02/10/2014
Résultat de l'étalonnage		Appareil conforme
Méthodologie de dosage		Chromatographie ionique
Norme appliqué		EN 14791:2005 - ISO 11632:1998
Sous-traitant		Eurofins Environnement, Saverne, France

Concentration du dioxyde de soufre dans les rejets atmosphériques

SO ₂ sur gaz sec à conditions normales et à 11% d'oxygène	$32.47 \text{ mg/Nm}^3 \pm 1.04 \text{ mg/Nm}^3$
Valeur limite d'émission de SO 2	110 mg/Nm ³
Conformité des émissions de SO 2	Les émissions sont conformes.

Poussières

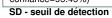
Identifiant du filtre		18MI
Volume prélevé normalisé	Nm ³	0.7228
Poids filtre avant	g	0.1729
Poids filtre après	g	0.1744
Poussières dans l'échantillon	mg	1.5

Poussières totaux sur gaz sec à 101.3kPa et 273K	mg/Nm ³	2.1
Poussières totaux sur gaz sec à 101.3kPa, 273K et 11% d'oxygène	mg/Nm ³	2.6
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	mg/Nm ³	0.3

Norme appliquée		NF EN 13284:2002
Début-Fin de prélèvement		14:00 - 16:39
Durée de prélèvement nette	min	159
Type de filtre		QF20
Capacité de rétention		99.999% à 0.2–0.5μm

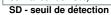
Balance		Adventurer AR0640
Fabricant		Ohaus Corporation
Nº de série		1226090600
Échelle	g	0 - 65
Résolution	mg	0.1
Poids étalon	g	50.0000
Identifiant du poids étalon		ZO529, OIML-E2

Comptage volumes		Débitmètre-régulateur-compteur massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-1C
Échelle	l/min	0 - 5
Résolution	I	0.1
Date du dernier étalonnage usine		02/10/2014


Concentration des poussières dans les rejets atmosphériques

Poussières sur gaz sec à conditions normales et à 11% d'oxygène	2.6 mg/Nm ³ ± 0.3 mg/Nm ³
Valeur limite d'émission des poussières	5 mg/Nm ³
Conformité des émissions de poussières	Les émissions sont conformes.

Métaux lourds – synthèse


•		Sans SD	Avec SI
As fraction filtrée	μg/Nm ³ _{sec, 11%O2}	0.40	0.40
As fraction passante	μg/Nm ³ _{sec, 11%O2}	0	0.14
Arsenic	μg/Nm ³ sec, 11%O2	0.40	0.54
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	1.66	
Cd fraction filtrée	μg/Nm ³ _{sec, 11%O2}	0.13	0.13
Cd fraction passante	μg/Nm ³ sec, 11%O2	0	0.14
Cadmium	μg/Nm ³ sec, 11%O2	0.13	0.27
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	1.57	
Co fraction filtrée	μg/Nm ³ _{sec, 11%O2}	2.24	2.24
Co fraction passante	μg/Nm ³ sec, 11%O2	0	0.14
Cobalt	μg/Nm ³ _{sec, 11%O2}	2.24	2.38
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	2.19	
Cr fraction filtrée	μg/Nm ³ _{sec, 11%O2}	63.5	63.5
Cr fraction passante	μg/Nm ³ _{sec, 11%O2}	5.298	5.298
Chrome	μg/Nm ³ sec, 11%O2	68.8	68.8
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ sec, 11%O2	29.67	
Cu fraction filtrée	μg/Nm ³ _{sec, 11%O2}	87.1	87.1
Cu fraction passante	μg/Nm ³ sec, 11%O2	3.78	3.78
Cuivre	μg/Nm ³ sec, 11%O2	90.9	90.9
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	53.88	
Mn fraction filtrée	μg/Nm ³ _{sec, 11%O2}	35.8	35.8
Mn fraction passante	μg/Nm ³ sec, 11%O2	10.92	10.92
Manganèse	μg/Nm ³ _{sec, 11%O2}	46.7	46.7
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ sec, 11%O2	33.46	
Ni fraction filtrée	μg/Nm ³ _{sec, 11%O2}	410	410
Ni fraction passante	μg/Nm ³ _{sec, 11%O2}	7.793	7.793
Nickel	μg/Nm ³ sec, 11%O2	418	418
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	315.50	

Métaux lourds - synthèse - suite

mictaux rourus – symmese – sume		Sans SD	Avec SI
Pb fraction filtrée	μg/Nm ³ sec, 11%O2	2.90	2.90
Pb fraction passante	μg/Nm ³ sec, 11%O2	1.86	1.86
Plomb	μg/Nm ³ _{sec, 11%O2}	4.76	4.76
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ sec, 11%O2	2.69	
Sb fraction filtrée	μg/Nm ³ _{sec, 11%O2}	4.86	4.86
Sb fraction passante	μg/Nm ³ sec, 11%O2	0	0.14
Antimoine	μg/Nm ³ _{sec, 11%O2}	4.86	5.00
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ sec, 11%O2	3.58	
Se fraction filtrée	μg/Nm ³ _{sec, 11%O2}	0	0.65
Se fraction passante	μg/Nm ³ _{sec, 11%O2}	0	0.35
Sélénium	μg/Nm ³ sec, 11%O2	0	1.0
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	1.88	
Sn fraction filtrée	μg/Nm ³ _{sec, 11%O2}	3.16	3.16
Sn fraction passante	μg/Nm ³ _{sec, 11%O2}	0	0.703
Étain	μg/Nm ³ sec, 11%02	3.16	3.87
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	3.31	
Te fraction filtrée	μg/Nm ³ _{sec, 11%O2}	0	0.33
Te fraction passante	μg/Nm ³ sec, 11%O2	0	0.33
Tellure	μg/Nm ³ sec, 11%O2	0	0.14
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm sec, 11%02 μg/Nm sec, 11%02	1.61	0.47
The stime file for	a. 3	0	0.10
TI fraction filtrée	μg/Nm ³ _{sec, 11%O2}	0	0.13
The Utilian	μg/Nm ³ _{sec, 11%O2}	0	0.35
Thallium Incertitude composée élargie (k=2, niveau de	μg/Nm ³ sec, 11%O2	0	0.48
confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	1.81	
V fraction filtrée	μg/Nm ³ sec, 11%O2	0.38	0.38
V fraction passante	μg/Nm ³ sec, 11%O2	0	0.14
Vanadium	μg/Nm ³ _{sec, 11%O2}	0.38	0.52
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	1.57	ı

Métaux lourds - synthèse - suite

		Sans SD	Avec SD
Zn fraction filtrée	μg/Nm ³ sec, 11%O2	504	504
Zn fraction passante	μg/Nm ³ sec, 11%O2	36.1	36.1
Zinc	μg/Nm ³ _{sec, 11%O2}	540	540
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³ _{sec, 11%O2}	464.93	

Métaux lourds - valeurs limites

Valeur limite d'émission Cd	μg/Nm ³ _{sec, 11%O2}	50
Valeur mesurée sans SD Cd	μg/Nm ³ _{sec, 11%O2}	0.13 ± 1.6
Valeur mesurée avec SD Cd	μg/Nm ³ sec, 11%O2	0.27 ± 1.6
Conformité	10,	Les émissions sont conformes.
Valeur limite d'émission TI	μg/Nm ³ sec, 11%O2	50
Valeur mesurée sans SD TI	μg/Nm ³ sec, 11%O2	0 ± 1.8
Valeur mesurée avec SD TI	μg/Nm ³ sec, 11%O2	0.48 ± 1.8
Conformité		Les émissions sont conformes.
Valeur limite d'émission Cd + Hg + Tl	μg/Nm ³ _{sec, 11%O2}	100
Valeur mesurée sans SD Cd + Hg + Tl	μg/Nm ³ sec, 11%O2	0 ± 2.4
Valeur mesurée avec SD Cd + Hg + Tl	μg/Nm ³ sec, 11%O2	1 ± 2.4
Conformité		Les émissions sont conformes.
Valeur limite d'émission As + Se + Te	μg/Nm ³ _{sec, 11%O2}	1000
Valeur mesurée sans SD As + Se + Te	μg/Nm ³ _{sec, 11%O2}	0 ± 3.0
Valeur mesurée avec SD As + Se + Te	μg/Nm ³ sec, 11%O2	2.0 ± 3.0
Conformité	10	Les émissions sont conformes.
Valeur limite d'émission Pb	μg/Nm ³ sec, 11%O2	1000
Valeur mesurée sans SD Pb	μg/Nm ³ sec, 11%O2	4.76 ± 2.7
Valeur mesurée avec SD Pb	μg/Nm ³ _{sec, 11%O2}	4.76 ± 2.7
Conformité	P9/ · · · · Sec, 11/802	Les émissions sont conformes.
Valeur limite d'émission Sb	μg/Nm ³ sec, 11%O2	20000
Valeur mesurée sans SD Sb	μg/Nm ³ sec, 11%O2	4.86 ± 3.6
Valeur mesurée avec SD Sb	μg/Nm ³ sec, 11%O2	5.00 ± 3.6
Conformité	1.0 000, 11/002	Les émissions sont conformes.
Valeur limite d'émission Cr	μg/Nm ³ sec, 11%O2	20000
Valeur mesurée sans SD Cr	μg/Nm ³ sec, 11%O2	68.8 ± 29.7
Valeur mesurée avec SD Cr	μg/Nm ³ _{sec, 11%O2}	68.8 ± 29.7
Conformité	1 2 333, 1,00	Les émissions sont conformes.

ISDND de Viggianello 18 décembre 2018

Métaux lourds - valeurs limites - suite

Valeur limite d'émission Co	μg/Nm ³ _{sec, 11%O2}	20000
Valeur mesurée sans SD Co	μg/Nm ³ sec, 11%O2	2.24 ± 2.2
Valeur mesurée avec SD Co	μg/Nm ³ sec, 11%O2	2.38 ± 2.2
Conformité	P-9/ 360, 11/602	Les émissions sont conformes.
Valeur limite d'émission Cu	μg/Nm ³ sec, 11%O2	20000
Valeur mesurée sans SD Cu	μg/Nm ³ sec, 11%O2	90.9 ± 53.9
Valeur mesurée avec SD Cu	μg/Nm ³ sec, 11%O2	90.9 ± 53.9
Conformité	,	Les émissions sont conformes.
Valeur limite d'émission Sn	μg/Nm ³ _{sec, 11%O2}	20000
Valeur mesurée sans SD Sn	μg/Nm ³ sec, 11%O2	3.16 ± 3.3
Valeur mesurée avec SD Sn	μg/Nm ³ sec, 11%O2	3.87 ± 3.3
Conformité		Les émissions sont conformes.
Valeur limite d'émission Mn	μg/Nm ³ _{sec, 11%O2}	20000
Valeur mesurée sans SD Mn	μg/Nm ³ _{sec, 11%O2}	46.7 ± 33.5
Valeur mesurée avec SD Mn	μg/Nm ³ sec, 11%O2	46.7 ± 33.5
Conformité	10 000,117002	Les émissions sont conformes.
Valeur limite d'émission Ni	μg/Nm ³ _{sec, 11%O2}	20000
Valeur mesurée sans SD Ni	μg/Nm ³ _{sec, 11%O2}	418 ± 315.5
Valeur mesurée avec SD Ni	μg/Nm ³ _{sec, 11%O2}	418 ± 315.5
Conformité	μg/N/III sec, 11%O2	Les émissions sont conformes.
Valeur limite d'émission V	, AL 3	20000
Valeur mesurée sans SD V	μg/Nm ³ _{sec, 11%O2}	20000 0.38 ± 1.6
Valeur mesurée avec SD V	μg/Nm ³ _{sec, 11%O2} μg/Nm ³ _{sec, 11%O2}	0.50 ± 1.6
Conformité	μg/INITI sec, 11%O2	Les émissions sont conformes.
Valeur limite d'émission Zn	μg/Nm ³ sec, 11%O2	20000
Valeur mesurée sans SD Zn	μg/Nm ³ sec, 11%O2	540 ± 464.9
Valeur mesurée avec SD Zn	μg/Nm ³ sec, 11%O2	540 ± 464.9
Conformité		Les émissions sont conformes.

Métaux lourds - fraction filtrée

Identifiant du filtre		18MI
Volume prélevé	I _{sec}	988.7
Volume prélevé normalisé	Nm ³ sec	0.967
Arsenic		
As dans l'échantillon	μg	0.31
Seuil de détection dans l'échantillon	μg	0.25
Blanc de mesure	μg	< SD
As	μg/Nm ³ _{sec, 11%O2}	0.40
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.29
Cadmium		
Cd dans l'échantillon	μg	0.10
Seuil de détection dans l'échantillon	μg	0.10
Blanc de mesure	μg	< SD
Cd	μg/Nm ³ _{sec, 11%O2}	0.13
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.20
Cobalt		
Co dans l'échantillon	μg	1.72
Seuil de détection dans l'échantillon	μg	0.10
Blanc de mesure	μg	< SD
Co	μg/Nm ³ _{sec, 11%O2}	2.24
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.81
Chrome		
Cr dans l'échantillon	μg	48.8
Seuil de détection dans l'échantillon	μg	0.25
Blanc de mesure	μg	< SD
Cr	μg/Nm ³ _{sec, 11%O2}	63.5
	μg/Nm ³ _{sec, 11%O2}	

Cuivre

Culvie			
Cu dans l'échantillon	μg	66.9	
Seuil de détection dans l'échantillon	μg	1.00	
Blanc de mesure	μg	< SD	
Cu	μg/Nm ³ _{sec, 11%O2}	87.1	
Incertitude	μg/Nm ³ _{sec, 11%O2}	26.91	

Métaux lourds - fraction filtrée - suite

M	a	n	g	a	n	è	S	e

Mn dans l'échantillon	μg	27.5
Seuil de détection dans l'échantillon	μg	0.10
Blanc de mesure	μg	< SD
Mn	μg/Nm ³ _{sec, 11%O2}	35.8
Incertitude	μg/Nm ³ _{sec, 11%O2}	16.63

Nickel

Incertitude	μg/Nm ³ _{sec, 11%O2}	157.74	
Ni	μ g/Nm 3 sec, 11%O2	410	
Blanc de mesure	μg	< SD	
Seuil de détection dans l'échantillon	μg	1.00	
Ni dans l'échantillon	μg	315	

Plomb

Pb dans l'échantillon	μg	2.23
Seuil de détection dans l'échantillon	μg	0.25
Blanc de mesure	μg	< SD
Pb	μg/Nm ³ _{sec, 11%O2}	2.90
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.79

Antimoine

Sb dans l'échantillon	μg	3.73
Seuil de détection dans l'échantillon	μg	0.25
Blanc de mesure	μg	< SD
Sb	μg/Nm ³ _{sec, 11%O2}	4.86
Incertitude	μg/Nm ³ _{sec, 11%O2}	1.61

Sélénium

Se dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.50
Blanc de mesure	μg	< SD
Se	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.38

Métaux lourds - fraction filtrée - suite

Étain

Incertitude	μg/Nm ³ _{sec, 11%O2}	1.34	
Sn	μ g/Nm 3 _{sec, 11%O2}	3.16	
Blanc de mesure	μg	< SD	
Seuil de détection dans l'échantillon	μg	0.25	
Sn dans l'échantillon	μg	2.43	

Tellure

Te dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.25
Blanc de mesure	μg	< SD
Те	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.26

Thallium

TI dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.10
Blanc de mesure	μg	< SD
ТІ	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.16

Vanadium

V dans l'échantillon	μg	0.29
Seuil de détection dans l'échantillon	μg	0.10
Blanc de mesure	μg	< SD
V	μg/Nm ³ sec, 11%O2	0.38
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.20

Zinc

Zn dans l'échantillon	μg	387
Seuil de détection dans l'échantillon	μg	2.50
Blanc de mesure	μg	< SD
Zn	μg/Nm ³ _{sec, 11%O2}	504
Incertitude	μg/Nm ³ _{sec, 11%O2}	232.45

Métaux lourds - fraction passante

Identifiants d'échantillon		18MF, 18MG
Volume prélevé	I sec	258.0
Volume prélevé normalisé	Nm ³ sec	0.252

Arsenic

As dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
As	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ sec, 11%O2	0.78

Cadmium

Cd dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Cd	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.76

Cobalt

Co dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Со	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.74

Chrome

Cr dans l'échantillon	μg	1.062
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Cr	μg/Nm ³ _{sec, 11%O2}	5.298
Incertitude	μg/Nm ³ _{sec, 11%O2}	1.13

Cuivre

Cu dans l'échantillon	μg	0.758
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Cu	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	1.28

Métaux lourds - fraction passante - suite

Manganèse

Mn dans l'échantillon	μg	2.189
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Mn	μg/Nm ³ _{sec, 11%O2}	10.92
Incertitude	μg/Nm ³ _{sec, 11%O2}	1.81

Nickel

Ni dans l'échantillon	μg	1.562
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Ni	μg/Nm ³ _{sec, 11%O2}	7.793
Incertitude	μg/Nm ³ _{sec, 11%O2}	1.66

Plomb

Pb dans l'échantillon	μg	0.372
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Pb	μg/Nm ³ _{sec, 11%O2}	1.86
Incertitude	μg/Nm ³ sec, 11%O2	1.09

Antimoine

Sb dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Sb	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.78

Sélénium

Se dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.070
Blanc de mesure	μg	< SD
Se	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.86

Métaux lourds - fraction passante - suite

Étain

Sn dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.141
Blanc de mesure	μg	< SD
Sn	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.97

Tellure

Te dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
Те	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.76

Thallium

TI dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.070
Blanc de mesure	μg	< SD
ТІ	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.89

Vanadium

V dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.028
Blanc de mesure	μg	< SD
V	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³ _{sec, 11%O2}	0.76

Zinc

Zn dans l'échantillon	μg	7.23
Seuil de détection dans l'échantillon	μg	1.00
Blanc de mesure	μg	< SD
Zn	μg/Nm ³ _{sec, 11%O2}	36.1
Incertitude	μg/Nm ³ _{sec, 11%O2}	2.43

Métaux lourds - fraction filtrée

motada naonon miso		
Norme appliquée		NF EN 13284:2002
Début-Fin de prélèvement		13:23 - 16:39
Durée de prélèvement nette	min	196
Type de filtre		QF20
Capacité de rétention		99.999% à 0.2–0.5μm
Concentration type des métaux non cités dans le filtre	ppm	<seuil de="" mesure<="" td=""></seuil>
Concentration type de Cd dans le filtre	ppm	<1
Concentration type de Cr, Mn, Ni, Pb et V dans le filtre	ppm	<10
Concentration type de Co dans le filtre	ppm	<5
Concentration type de Cu dans le filtre	ppm	5.2
Concentration type de Fe dans le filtre	ppm	50
Concentration type de Zn dans le filtre	ppm	11
Comptage volumes		Débitmètre-régulateur-compteur massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-2C
Échelle	l/min	0 - 5
Résolution	I	0.1
Date du dernier étalonnage usine		20/01/2015
Méthodologie de dosage		Chromatographie ionique
Norme appliqué		NF EN 14385:2004
Sous-traitant		Eurofins Environnement, Saverne, France

Métaux lourds – fraction passante

wetaux lourus – maction passame		
Méthodologie de prélèvement		Flacons-laveurs à solution de HNO_3 et H_2O_2
Norme appliquée		NF EN 14385:2004
Début-Fin du prélèvement		14:00 - 15:38
Durée nette de prélèvement	min	98
Débit moyen de prélèvement	l/min	2.6
Détermination du débit		Compteur de débit massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-2C
Échelle débitmètre	l/min	0 - 5
Résolution compteur	I	0.1
Date du dernier étalonnage usine		20/01/2015
Méthodologie de dosage		Chromatographie ionique
Norme appliqué		NF EN 14385:2004
Sous-traitant		Eurofins Environnement, Saverne, France

Mercure - fraction filtrée

Identifiant du filtre		18MI
Volume prélevé normalisé	Nm ³ sec	0.723
Hg dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.100
Blanc de mesure	μg	< 0.10
Hg	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³	0.14

SD - seuil de détection

Mercure - fraction passante

Identifiants d'échantillon		18MH
Volume prélevé normalisé	Nm ³ sec	0.226
Hg dans l'échantillon	μg	< SD
Seuil de détection dans l'échantillon	μg	0.16
Blanc de mesure	μg	< 0.10
Hg	μg/Nm ³ _{sec, 11%O2}	< SD
Incertitude	μg/Nm ³	0.32

SD - seuil de détection

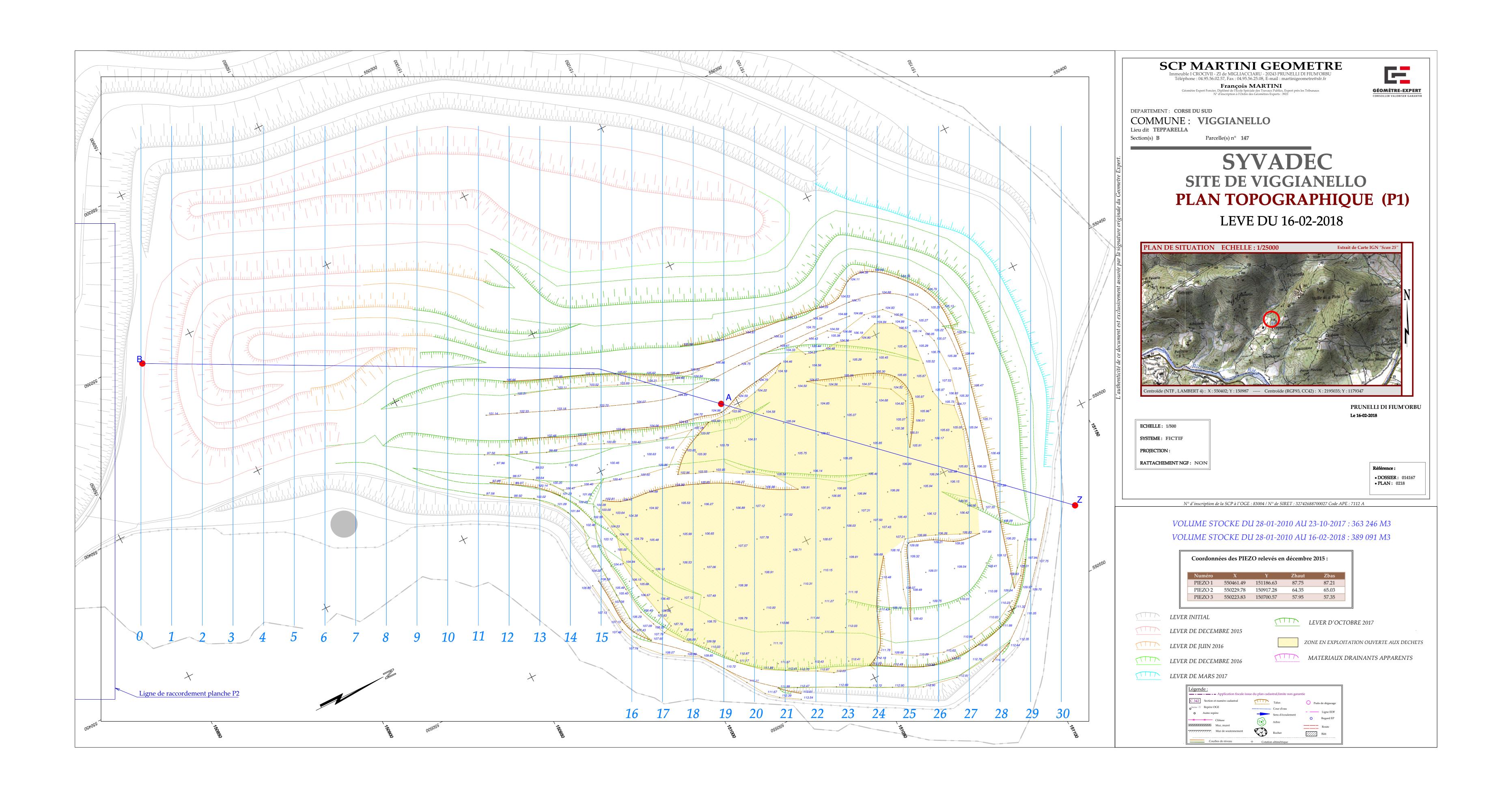
Concentration de mercure dans les rejets atmosphériques

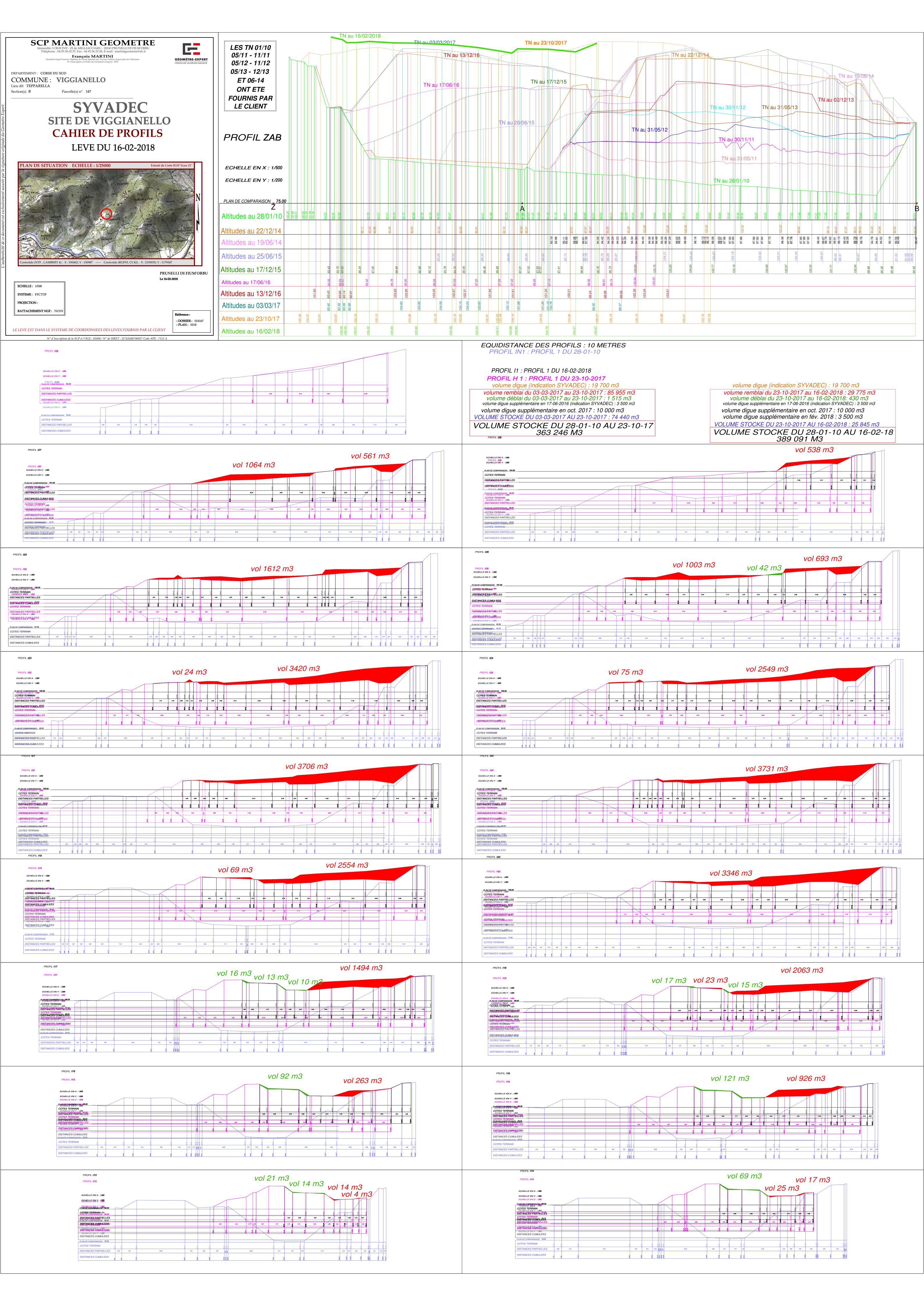
Hg sur gaz sec à conditions normales et à 11% d'oxygène sans SD		0 μg/Nm ³
Hg sur gaz sec à conditions normales et à 11% d'oxygène avec SD		1.1 μg/Nm ³
Incertitude composée élargie (k=2, niveau de confiance=95.45%)	μg/Nm ³	0.70
Valeur limite de la concentration émise du Hg	μg/Nm ³	50
Conformité de la concentration émise		Les émissions sont conformes.

Mercure - suite

Mercure - fraction filtrée

Norme appliquée		NF EN 13211:2001
Début-Fin de prélèvement		14:00 - 16:39
Durée de prélèvement nette	min	159
Type de filtre		QF20
Capacité de rétention		99.999% à 0.2–0.5μm
Comptage volumes		Débitmètre-régulateur-compteur massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-3C
Échelle	l/min	0 - 5
Résolution	I	0.1
Date du dernier étalonnage usine		10/12/2014
Méthodologie de dosage		Chromatographie ionique
Norme appliqué		NF EN 14385:2004
Sous-traitant		Eurofins Environnement, Saverne, France


Mercure - fraction passante


wercure - machon passante		
Méthodologie de prélèvement		Flacons-laveurs à solution de K ₂ Cr ₂ O ₇
Norme appliquée		NF EN 14385:2004
Début-Fin du prélèvement		14:00 - 15:38
Durée nette de prélèvement	min	98
Débit moyen de prélèvement	l/min	2.4
Détermination du débit		Compteur de débit massique
Appareil		Régulateur-compteur GFC17
Fabricant		Aalborg Instruments & Controls inc.
Nº de série		G136614-3C
Échelle débitmètre	l/min	0 - 5
Résolution compteur	I	0.1
Date du dernier étalonnage usine		10/12/2014
Méthodologie de dosage		Chromatographie ionique
Norme appliqué		NF EN 14385:2004
Sous-traitant		Eurofins Environnement, Saverne, France

Annexe 11. Plans topographique – février 2018

